"vscode:/vscode.git/clone" did not exist on "9df3d8438209ce09b27047318c59c1dc41957ad1"
gcn.py 3.75 KB
Newer Older
Lingfan Yu's avatar
Lingfan Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import networkx as nx
from dgl.graph import DGLGraph
import torch
import torch.nn as nn
import torch.nn.functional as F
import argparse
from dataset import load_data, preprocess_features
import numpy as np

class NodeUpdateModule(nn.Module):
    def __init__(self, input_dim, output_dim, act=None, p=None):
        super(NodeUpdateModule, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim)
        self.act = act
        self.p = p

    def forward(self, node, msgs):
        h = node['h']
Lingfan Yu's avatar
Lingfan Yu committed
19
        # (lingfan): how to write dropout, is the following correct?
Lingfan Yu's avatar
Lingfan Yu committed
20
21
        if self.p is not None:
            h = F.dropout(h, p=self.p)
Lingfan Yu's avatar
Lingfan Yu committed
22
        # aggregate messages
Lingfan Yu's avatar
Lingfan Yu committed
23
24
25
26
27
28
29
30
31
32
        for msg in msgs:
            h += msg
        h = self.linear(h)
        if self.act is not None:
            h = self.act(h)
        # (lingfan): Can user directly update node instead of using return statement?
        return {'h': h}


class GCN(nn.Module):
Lingfan Yu's avatar
Lingfan Yu committed
33
    def __init__(self, input_dim, num_hidden, num_classes, num_layers, activation, dropout=None, output_projection=True):
Lingfan Yu's avatar
Lingfan Yu committed
34
35
36
37
38
39
40
41
42
        super(GCN, self).__init__()
        self.layers = nn.ModuleList()
        # hidden layers
        last_dim = input_dim
        for _ in range(num_layers):
            self.layers.append(
                    NodeUpdateModule(last_dim, num_hidden, act=activation, p=dropout))
            last_dim = num_hidden
        # output layer
Lingfan Yu's avatar
Lingfan Yu committed
43
44
        if output_projection:
            self.layers.append(NodeUpdateModule(num_hidden, num_classes, p=dropout))
Lingfan Yu's avatar
Lingfan Yu committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

    def forward(self, g):
        g.register_message_func(lambda src, dst, edge: src['h'])
        for layer in self.layers:
            g.register_update_func(layer)
            g.update_all()
        logits = [g.node[n]['h'] for n in g.nodes()]
        return torch.cat(logits, dim=0)


def main(args):
    # load and preprocess dataset
    adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask = load_data(args.dataset)
    features = preprocess_features(features)

    # initialize graph
    g = DGLGraph(adj)

    # create GCN model
    model = GCN(features.shape[1],
                args.num_hidden,
                y_train.shape[1],
                args.num_layers,
                F.relu,
                args.dropout)

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    # convert labels and masks to tensor
    labels = torch.FloatTensor(y_train)
    mask = torch.FloatTensor(train_mask.astype(np.float32))
Lingfan Yu's avatar
Lingfan Yu committed
77
    n_train = torch.sum(mask)
Lingfan Yu's avatar
Lingfan Yu committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

    for epoch in range(args.epochs):
        # reset grad
        optimizer.zero_grad()

        # reset graph states
        for n in g.nodes():
            g.node[n]['h'] = torch.FloatTensor(features[n].toarray())

        # forward
        logits = model.forward(g)

        # masked cross entropy loss
        # TODO: (lingfan) use gather to speed up
        logp = F.log_softmax(logits, 1)
Lingfan Yu's avatar
Lingfan Yu committed
93
        loss = -torch.sum(logp * labels * mask.view(-1, 1)) / n_train
Lingfan Yu's avatar
Lingfan Yu committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        print("epoch {} loss: {}".format(epoch, loss.item()))

        loss.backward()
        optimizer.step()

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
    parser.add_argument("--dataset", type=str, required=True,
            help="dataset name")
    parser.add_argument("--num-layers", type=int, default=1,
            help="number of gcn layers")
    parser.add_argument("--num-hidden", type=int, default=64,
            help="number of hidden units")
    parser.add_argument("--epochs", type=int, default=10,
            help="training epoch")
    parser.add_argument("--dropout", type=float, default=None,
            help="dropout probability")
    parser.add_argument("--lr", type=float, default=0.001,
            help="learning rate")
    args = parser.parse_args()
    print(args)

    main(args)