test_data.py 70.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import unittest
import backend as F
import numpy as np
import gzip
import tempfile
import os
import pandas as pd
import yaml
import pytest
import dgl
import dgl.data as data
from dgl import DGLError
import dgl

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_minigc():
    ds = data.MiniGCDataset(16, 10, 20)
    g, l = list(zip(*ds))
    print(g, l)
    g1 = ds[0][0]
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    ds = data.MiniGCDataset(16, 10, 20, transform=transform)
    g2 = ds[0][0]
    assert g2.num_edges() - g1.num_edges() == g1.num_nodes()

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_gin():
    ds_n_graphs = {
        'MUTAG': 188,
        'IMDBBINARY': 1000,
        'IMDBMULTI': 1500,
        'PROTEINS': 1113,
        'PTC': 344,
    }
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    for name, n_graphs in ds_n_graphs.items():
        ds = data.GINDataset(name, self_loop=False, degree_as_nlabel=False)
        assert len(ds) == n_graphs, (len(ds), name)
        g1 = ds[0][0]
        ds = data.GINDataset(name, self_loop=False, degree_as_nlabel=False, transform=transform)
        g2 = ds[0][0]
        assert g2.num_edges() - g1.num_edges() == g1.num_nodes()
        assert ds.num_classes == ds.gclasses

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_fraud():
    transform = dgl.AddSelfLoop(allow_duplicate=True)

    g = data.FraudDataset('amazon')[0]
    assert g.num_nodes() == 11944
    num_edges1 = g.num_edges()
    g2 = data.FraudDataset('amazon', transform=transform)[0]
    # 3 edge types
    assert g2.num_edges() - num_edges1 == g.num_nodes() * 3

    g = data.FraudAmazonDataset()[0]
    assert g.num_nodes() == 11944
    g2 = data.FraudAmazonDataset(transform=transform)[0]
    # 3 edge types
    assert g2.num_edges() - g.num_edges() == g.num_nodes() * 3

    g = data.FraudYelpDataset()[0]
    assert g.num_nodes() == 45954
    g2 = data.FraudYelpDataset(transform=transform)[0]
    # 3 edge types
    assert g2.num_edges() - g.num_edges() == g.num_nodes() * 3

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_fakenews():
    transform = dgl.AddSelfLoop(allow_duplicate=True)

    ds = data.FakeNewsDataset('politifact', 'bert')
    assert len(ds) == 314
    g = ds[0][0]
    g2 = data.FakeNewsDataset('politifact', 'bert', transform=transform)[0][0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

    ds = data.FakeNewsDataset('gossipcop', 'profile')
    assert len(ds) == 5464
    g = ds[0][0]
    g2 = data.FakeNewsDataset('gossipcop', 'profile', transform=transform)[0][0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_tudataset_regression():
    ds = data.TUDataset('ZINC_test', force_reload=True)
    assert ds.num_classes == ds.num_labels
    assert len(ds) == 5000
    g = ds[0][0]

    transform = dgl.AddSelfLoop(allow_duplicate=True)
    ds = data.TUDataset('ZINC_test', force_reload=True, transform=transform)
    g2 = ds[0][0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_data_hash():
    class HashTestDataset(data.DGLDataset):
        def __init__(self, hash_key=()):
            super(HashTestDataset, self).__init__(
                'hashtest', hash_key=hash_key)

        def _load(self):
            pass

    a = HashTestDataset((True, 0, '1', (1, 2, 3)))
    b = HashTestDataset((True, 0, '1', (1, 2, 3)))
    c = HashTestDataset((True, 0, '1', (1, 2, 4)))
    assert a.hash == b.hash
    assert a.hash != c.hash


@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_citation_graph():
    transform = dgl.AddSelfLoop(allow_duplicate=True)

    # cora
    g = data.CoraGraphDataset(force_reload=True, reorder=True)[0]
    assert g.num_nodes() == 2708
    assert g.num_edges() == 10556
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
    g2 = data.CoraGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

    # Citeseer
    g = data.CiteseerGraphDataset(force_reload=True, reorder=True)[0]
    assert g.num_nodes() == 3327
    assert g.num_edges() == 9228
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
    g2 = data.CiteseerGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

    # Pubmed
    g = data.PubmedGraphDataset(force_reload=True, reorder=True)[0]
    assert g.num_nodes() == 19717
    assert g.num_edges() == 88651
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
    g2 = data.PubmedGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()


@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_gnn_benchmark():
    transform = dgl.AddSelfLoop(allow_duplicate=True)

    # AmazonCoBuyComputerDataset
    g = data.AmazonCoBuyComputerDataset()[0]
    assert g.num_nodes() == 13752
    assert g.num_edges() == 491722
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
    g2 = data.AmazonCoBuyComputerDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

    # AmazonCoBuyPhotoDataset
    g = data.AmazonCoBuyPhotoDataset()[0]
    assert g.num_nodes() == 7650
    assert g.num_edges() == 238163
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
    g2 = data.AmazonCoBuyPhotoDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

    # CoauthorPhysicsDataset
    g = data.CoauthorPhysicsDataset()[0]
    assert g.num_nodes() == 34493
    assert g.num_edges() == 495924
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
    g2 = data.CoauthorPhysicsDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

    # CoauthorCSDataset
    g = data.CoauthorCSDataset()[0]
    assert g.num_nodes() == 18333
    assert g.num_edges() == 163788
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
    g2 = data.CoauthorCSDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

    # CoraFullDataset
    g = data.CoraFullDataset()[0]
    assert g.num_nodes() == 19793
    assert g.num_edges() == 126842
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
    g2 = data.CoraFullDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()


@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_reddit():
    # RedditDataset
    g = data.RedditDataset()[0]
    assert g.num_nodes() == 232965
    assert g.num_edges() == 114615892
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    transform = dgl.AddSelfLoop(allow_duplicate=True)
    g2 = data.RedditDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_explain_syn():
    dataset = data.BAShapeDataset()
    assert dataset.num_classes == 4
    g = dataset[0]
    assert 'label' in g.ndata
    assert 'feat' in g.ndata

    g1 = data.BAShapeDataset(force_reload=True, seed=0)[0]
    src1, dst1 = g1.edges()
    g2 = data.BAShapeDataset(force_reload=True, seed=0)[0]
    src2, dst2 = g2.edges()
    assert F.allclose(src1, src2)
    assert F.allclose(dst1, dst2)

    dataset = data.BACommunityDataset()
    assert dataset.num_classes == 8
    g = dataset[0]
    assert 'label' in g.ndata
    assert 'feat' in g.ndata

    g1 = data.BACommunityDataset(force_reload=True, seed=0)[0]
    src1, dst1 = g1.edges()
    g2 = data.BACommunityDataset(force_reload=True, seed=0)[0]
    src2, dst2 = g2.edges()
    assert F.allclose(src1, src2)
    assert F.allclose(dst1, dst2)

    dataset = data.TreeCycleDataset()
    assert dataset.num_classes == 2
    g = dataset[0]
    assert 'label' in g.ndata
    assert 'feat' in g.ndata

    g1 = data.TreeCycleDataset(force_reload=True, seed=0)[0]
    src1, dst1 = g1.edges()
    g2 = data.TreeCycleDataset(force_reload=True, seed=0)[0]
    src2, dst2 = g2.edges()
    assert F.allclose(src1, src2)
    assert F.allclose(dst1, dst2)

    dataset = data.TreeGridDataset()
    assert dataset.num_classes == 2
    g = dataset[0]
    assert 'label' in g.ndata
    assert 'feat' in g.ndata

    g1 = data.TreeGridDataset(force_reload=True, seed=0)[0]
    src1, dst1 = g1.edges()
    g2 = data.TreeGridDataset(force_reload=True, seed=0)[0]
    src2, dst2 = g2.edges()
    assert F.allclose(src1, src2)
    assert F.allclose(dst1, dst2)

    dataset = data.BA2MotifDataset()
    assert dataset.num_classes == 2
    g, label = dataset[0]
    assert 'feat' in g.ndata

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_wiki_cs():
    g = data.WikiCSDataset()[0]
    assert g.num_nodes() == 11701
    assert g.num_edges() == 431726
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    transform = dgl.AddSelfLoop(allow_duplicate=True)
    g2 = data.WikiCSDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

@unittest.skip(reason="Dataset too large to download for the latest CI.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_yelp():
    g = data.YelpDataset(reorder=True)[0]
    assert g.num_nodes() == 716847
    assert g.num_edges() == 13954819
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    transform = dgl.AddSelfLoop(allow_duplicate=True)
    g2 = data.YelpDataset(reorder=True, transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_flickr():
    g = data.FlickrDataset(reorder=True)[0]
    assert g.num_nodes() == 89250
    assert g.num_edges() == 899756
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    transform = dgl.AddSelfLoop(allow_duplicate=True)
    g2 = data.FlickrDataset(reorder=True, transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_extract_archive():
    # gzip
    with tempfile.TemporaryDirectory() as src_dir:
        gz_file = 'gz_archive'
        gz_path = os.path.join(src_dir, gz_file + '.gz')
        content = b"test extract archive gzip"
        with gzip.open(gz_path, 'wb') as f:
            f.write(content)
        with tempfile.TemporaryDirectory() as dst_dir:
            data.utils.extract_archive(gz_path, dst_dir, overwrite=True)
            assert os.path.exists(os.path.join(dst_dir, gz_file))


def _test_construct_graphs_node_ids():
    from dgl.data.csv_dataset_base import NodeData, EdgeData, DGLGraphConstructor
    num_nodes = 100
    num_edges = 1000

    # node IDs are required to be unique
    node_ids = np.random.choice(np.arange(num_nodes / 2), num_nodes)
    src_ids = np.random.choice(node_ids, size=num_edges)
    dst_ids = np.random.choice(node_ids, size=num_edges)
    node_data = NodeData(node_ids, {})
    edge_data = EdgeData(src_ids, dst_ids, {})
    expect_except = False
    try:
        _, _ = DGLGraphConstructor.construct_graphs(
            node_data, edge_data)
    except:
        expect_except = True
    assert expect_except

    # node IDs are already labelled from 0~num_nodes-1
    node_ids = np.arange(num_nodes)
    np.random.shuffle(node_ids)
    _, idx = np.unique(node_ids, return_index=True)
    src_ids = np.random.choice(node_ids, size=num_edges)
    dst_ids = np.random.choice(node_ids, size=num_edges)
    node_feat = np.random.rand(num_nodes, 3)
    node_data = NodeData(node_ids, {'feat':node_feat})
    edge_data = EdgeData(src_ids, dst_ids, {})
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
        node_data, edge_data)
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert g.is_homogeneous
    assert g.num_nodes() == len(node_ids)
    assert g.num_edges() == len(src_ids)
    assert F.array_equal(F.tensor(node_feat[idx], dtype=F.float32), g.ndata['feat'])

    # node IDs are mixed with numeric and non-numeric values
    # homogeneous graph
    node_ids = [1, 2, 3, 'a']
    src_ids = [1, 2, 3]
    dst_ids = ['a', 1, 2]
    node_data = NodeData(node_ids, {})
    edge_data = EdgeData(src_ids, dst_ids, {})
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
        node_data, edge_data)
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert g.is_homogeneous
    assert g.num_nodes() == len(node_ids)
    assert g.num_edges() == len(src_ids)

    # heterogeneous graph
    node_ids_user = [1, 2, 3]
    node_ids_item = ['a', 'b', 'c']
    src_ids = node_ids_user
    dst_ids = node_ids_item
    node_data_user = NodeData(node_ids_user, {}, type='user')
    node_data_item = NodeData(node_ids_item, {}, type='item')
    edge_data = EdgeData(src_ids, dst_ids, {}, type=('user', 'like', 'item'))
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
        [node_data_user, node_data_item], edge_data)
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert not g.is_homogeneous
    assert g.num_nodes('user') == len(node_ids_user)
    assert g.num_nodes('item') == len(node_ids_item)
    assert g.num_edges() == len(src_ids)


def _test_construct_graphs_homo():
    from dgl.data.csv_dataset_base import NodeData, EdgeData, DGLGraphConstructor
    # node_id could be non-sorted, non-numeric.
    num_nodes = 100
    num_edges = 1000
    num_dims = 3
    node_ids = np.random.choice(
        np.arange(num_nodes*2), size=num_nodes, replace=False)
    assert len(node_ids) == num_nodes
    # to be non-sorted
    np.random.shuffle(node_ids)
    # to be non-numeric
    node_ids = ['id_{}'.format(id) for id in node_ids]
    t_ndata = {'feat': np.random.rand(num_nodes, num_dims),
               'label': np.random.randint(2, size=num_nodes)}
    _, u_indices = np.unique(node_ids, return_index=True)
    ndata = {'feat': t_ndata['feat'][u_indices],
             'label': t_ndata['label'][u_indices]}
    node_data = NodeData(node_ids, t_ndata)
    src_ids = np.random.choice(node_ids, size=num_edges)
    dst_ids = np.random.choice(node_ids, size=num_edges)
    edata = {'feat': np.random.rand(
        num_edges, num_dims), 'label': np.random.randint(2, size=num_edges)}
    edge_data = EdgeData(src_ids, dst_ids, edata)
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
        node_data, edge_data)
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert g.is_homogeneous
    assert g.num_nodes() == num_nodes
    assert g.num_edges() == num_edges

    def assert_data(lhs, rhs):
        for key, value in lhs.items():
            assert key in rhs
            assert F.dtype(rhs[key]) != F.float64
            assert F.array_equal(
                F.tensor(value, dtype=F.dtype(rhs[key])), rhs[key])
    assert_data(ndata, g.ndata)
    assert_data(edata, g.edata)


def _test_construct_graphs_hetero():
    from dgl.data.csv_dataset_base import NodeData, EdgeData, DGLGraphConstructor
    # node_id/src_id/dst_id could be non-sorted, duplicated, non-numeric.
    num_nodes = 100
    num_edges = 1000
    num_dims = 3
    ntypes = ['user', 'item']
    node_data = []
    node_ids_dict = {}
    ndata_dict = {}
    for ntype in ntypes:
        node_ids = np.random.choice(
            np.arange(num_nodes*2), size=num_nodes, replace=False)
        assert len(node_ids) == num_nodes
        # to be non-sorted
        np.random.shuffle(node_ids)
        # to be non-numeric
        node_ids = ['id_{}'.format(id) for id in node_ids]
        t_ndata = {'feat': np.random.rand(num_nodes, num_dims),
                   'label': np.random.randint(2, size=num_nodes)}
        _, u_indices = np.unique(node_ids, return_index=True)
        ndata = {'feat': t_ndata['feat'][u_indices],
                 'label': t_ndata['label'][u_indices]}
        node_data.append(NodeData(node_ids, t_ndata, type=ntype))
        node_ids_dict[ntype] = node_ids
        ndata_dict[ntype] = ndata
    etypes = [('user', 'follow', 'user'), ('user', 'like', 'item')]
    edge_data = []
    edata_dict = {}
    for src_type, e_type, dst_type in etypes:
        src_ids = np.random.choice(node_ids_dict[src_type], size=num_edges)
        dst_ids = np.random.choice(node_ids_dict[dst_type], size=num_edges)
        edata = {'feat': np.random.rand(
            num_edges, num_dims), 'label': np.random.randint(2, size=num_edges)}
        edge_data.append(EdgeData(src_ids, dst_ids, edata,
                         type=(src_type, e_type, dst_type)))
        edata_dict[(src_type, e_type, dst_type)] = edata
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
        node_data, edge_data)
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert not g.is_homogeneous
    assert g.num_nodes() == num_nodes*len(ntypes)
    assert g.num_edges() == num_edges*len(etypes)

    def assert_data(lhs, rhs):
        for key, value in lhs.items():
            assert key in rhs
            assert F.dtype(rhs[key]) != F.float64
            assert F.array_equal(
                F.tensor(value, dtype=F.dtype(rhs[key])), rhs[key])
    for ntype in g.ntypes:
        assert g.num_nodes(ntype) == num_nodes
        assert_data(ndata_dict[ntype], g.nodes[ntype].data)
    for etype in g.canonical_etypes:
        assert g.num_edges(etype) == num_edges
        assert_data(edata_dict[etype], g.edges[etype].data)


def _test_construct_graphs_multiple():
    from dgl.data.csv_dataset_base import NodeData, EdgeData, GraphData, DGLGraphConstructor
    num_nodes = 100
    num_edges = 1000
    num_graphs = 10
    num_dims = 3
lisj's avatar
lisj committed
513
514
515
516
517
518
    node_ids = np.array([], dtype=int)
    src_ids = np.array([], dtype=int)
    dst_ids = np.array([], dtype=int)
    ngraph_ids = np.array([], dtype=int)
    egraph_ids = np.array([], dtype=int)
    u_indices = np.array([], dtype=int)
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
    for i in range(num_graphs):
        l_node_ids = np.random.choice(
            np.arange(num_nodes*2), size=num_nodes, replace=False)
        node_ids = np.append(node_ids, l_node_ids)
        _, l_u_indices = np.unique(l_node_ids, return_index=True)
        u_indices = np.append(u_indices, l_u_indices)
        ngraph_ids = np.append(ngraph_ids, np.full(num_nodes, i))
        src_ids = np.append(src_ids, np.random.choice(
            l_node_ids, size=num_edges))
        dst_ids = np.append(dst_ids, np.random.choice(
            l_node_ids, size=num_edges))
        egraph_ids = np.append(egraph_ids, np.full(num_edges, i))
    ndata = {'feat': np.random.rand(num_nodes*num_graphs, num_dims),
             'label': np.random.randint(2, size=num_nodes*num_graphs)}
    ngraph_ids = ['graph_{}'.format(id) for id in ngraph_ids]
    node_data = NodeData(node_ids, ndata, graph_id=ngraph_ids)
    egraph_ids = ['graph_{}'.format(id) for id in egraph_ids]
    edata = {'feat': np.random.rand(
        num_edges*num_graphs, num_dims), 'label': np.random.randint(2, size=num_edges*num_graphs)}
    edge_data = EdgeData(src_ids, dst_ids, edata, graph_id=egraph_ids)
    gdata = {'feat': np.random.rand(num_graphs, num_dims),
             'label': np.random.randint(2, size=num_graphs)}
    graph_ids = ['graph_{}'.format(id) for id in np.arange(num_graphs)]
    graph_data = GraphData(graph_ids, gdata)
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
        node_data, edge_data, graph_data)
    assert len(graphs) == num_graphs
    assert len(data_dict) == len(gdata)
    for k, v in data_dict.items():
        assert F.dtype(v) != F.float64
        assert F.array_equal(F.reshape(F.tensor(gdata[k], dtype=F.dtype(v)), (len(graphs), -1)), v)
    for i, g in enumerate(graphs):
        assert g.is_homogeneous
        assert g.num_nodes() == num_nodes
        assert g.num_edges() == num_edges

        def assert_data(lhs, rhs, size, node=False):
            for key, value in lhs.items():
                assert key in rhs
                value = value[i*size:(i+1)*size]
                if node:
                    indices = u_indices[i*size:(i+1)*size]
                    value = value[indices]
                assert F.dtype(rhs[key]) != F.float64
                assert F.array_equal(
                    F.tensor(value, dtype=F.dtype(rhs[key])), rhs[key])
        assert_data(ndata, g.ndata, num_nodes, node=True)
        assert_data(edata, g.edata, num_edges)

    # Graph IDs found in node/edge CSV but not in graph CSV
    graph_data = GraphData(np.arange(num_graphs-2), {})
    expect_except = False
    try:
        _, _ = DGLGraphConstructor.construct_graphs(
            node_data, edge_data, graph_data)
    except:
        expect_except = True
    assert expect_except


def _test_DefaultDataParser():
    from dgl.data.csv_dataset_base import DefaultDataParser
    # common csv
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
        num_nodes = 5
        num_labels = 3
        num_dims = 2
        node_id = np.arange(num_nodes)
        label = np.random.randint(num_labels, size=num_nodes)
        feat = np.random.rand(num_nodes, num_dims)
        df = pd.DataFrame({'node_id': node_id, 'label': label,
                           'feat': [line.tolist() for line in feat],
                           })
        df.to_csv(csv_path, index=False)
        dp = DefaultDataParser()
        df = pd.read_csv(csv_path)
        dt = dp(df)
        assert np.array_equal(node_id, dt['node_id'])
        assert np.array_equal(label, dt['label'])
        assert np.array_equal(feat, dt['feat'])
    # string consists of non-numeric values
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
        df = pd.DataFrame({'label': ['a', 'b', 'c'],
                           })
        df.to_csv(csv_path, index=False)
        dp = DefaultDataParser()
        df = pd.read_csv(csv_path)
        expect_except = False
        try:
            dt = dp(df)
        except:
            expect_except = True
        assert expect_except
    # csv has index column which is ignored as it's unnamed
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
        df = pd.DataFrame({'label': [1, 2, 3],
                           })
        df.to_csv(csv_path)
        dp = DefaultDataParser()
        df = pd.read_csv(csv_path)
        dt = dp(df)
        assert len(dt) == 1


def _test_load_yaml_with_sanity_check():
    from dgl.data.csv_dataset_base import load_yaml_with_sanity_check
    with tempfile.TemporaryDirectory() as test_dir:
        yaml_path = os.path.join(test_dir, 'meta.yaml')
        # workable but meaningless usually
        yaml_data = {'dataset_name': 'default',
                     'node_data': [], 'edge_data': []}
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
        meta = load_yaml_with_sanity_check(yaml_path)
        assert meta.version == '1.0.0'
        assert meta.dataset_name == 'default'
        assert meta.separator == ','
        assert len(meta.node_data) == 0
        assert len(meta.edge_data) == 0
        assert meta.graph_data is None
        # minimum with required fields only
        yaml_data = {'version': '1.0.0', 'dataset_name': 'default', 'node_data': [{'file_name': 'nodes.csv'}],
                     'edge_data': [{'file_name': 'edges.csv'}],
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
        meta = load_yaml_with_sanity_check(yaml_path)
        for ndata in meta.node_data:
            assert ndata.file_name == 'nodes.csv'
            assert ndata.ntype == '_V'
            assert ndata.graph_id_field == 'graph_id'
            assert ndata.node_id_field == 'node_id'
        for edata in meta.edge_data:
            assert edata.file_name == 'edges.csv'
            assert edata.etype == ['_V', '_E', '_V']
            assert edata.graph_id_field == 'graph_id'
            assert edata.src_id_field == 'src_id'
            assert edata.dst_id_field == 'dst_id'
        # optional fields are specified
        yaml_data = {'version': '1.0.0', 'dataset_name': 'default',
                     'separator': '|',
                     'node_data': [{'file_name': 'nodes.csv', 'ntype': 'user', 'graph_id_field': 'xxx', 'node_id_field': 'xxx'}],
                     'edge_data': [{'file_name': 'edges.csv', 'etype': ['user', 'follow', 'user'], 'graph_id_field':'xxx', 'src_id_field':'xxx', 'dst_id_field':'xxx'}],
                     'graph_data': {'file_name': 'graph.csv', 'graph_id_field': 'xxx'}
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
        meta = load_yaml_with_sanity_check(yaml_path)
        assert len(meta.node_data) == 1
        ndata = meta.node_data[0]
        assert ndata.ntype == 'user'
        assert ndata.graph_id_field == 'xxx'
        assert ndata.node_id_field == 'xxx'
        assert len(meta.edge_data) == 1
        edata = meta.edge_data[0]
        assert edata.etype == ['user', 'follow', 'user']
        assert edata.graph_id_field == 'xxx'
        assert edata.src_id_field == 'xxx'
        assert edata.dst_id_field == 'xxx'
        assert meta.graph_data is not None
        assert meta.graph_data.file_name == 'graph.csv'
        assert meta.graph_data.graph_id_field == 'xxx'
        # some required fields are missing
        yaml_data = {'dataset_name': 'default',
                     'node_data': [], 'edge_data': []}
        for field in yaml_data.keys():
            ydata = {k: v for k, v in yaml_data.items()}
            ydata.pop(field)
            with open(yaml_path, 'w') as f:
                yaml.dump(ydata, f, sort_keys=False)
            expect_except = False
            try:
                meta = load_yaml_with_sanity_check(yaml_path)
            except:
                expect_except = True
            assert expect_except
        # inapplicable version
        yaml_data = {'version': '0.0.0', 'dataset_name': 'default', 'node_data': [{'file_name': 'nodes_0.csv'}],
                     'edge_data': [{'file_name': 'edges_0.csv'}],
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
            meta = load_yaml_with_sanity_check(yaml_path)
        except DGLError:
            expect_except = True
        assert expect_except
        # duplicate node types
        yaml_data = {'version': '1.0.0', 'dataset_name': 'default', 'node_data': [{'file_name': 'nodes.csv'}, {'file_name': 'nodes.csv'}],
                     'edge_data': [{'file_name': 'edges.csv'}],
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
            meta = load_yaml_with_sanity_check(yaml_path)
        except DGLError:
            expect_except = True
        assert expect_except
        # duplicate edge types
        yaml_data = {'version': '1.0.0', 'dataset_name': 'default', 'node_data': [{'file_name': 'nodes.csv'}],
                     'edge_data': [{'file_name': 'edges.csv'}, {'file_name': 'edges.csv'}],
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
            meta = load_yaml_with_sanity_check(yaml_path)
        except DGLError:
            expect_except = True
        assert expect_except


def _test_load_node_data_from_csv():
    from dgl.data.csv_dataset_base import MetaNode, NodeData, DefaultDataParser
    with tempfile.TemporaryDirectory() as test_dir:
        num_nodes = 100
        # minimum
        df = pd.DataFrame({'node_id': np.arange(num_nodes)})
        csv_path = os.path.join(test_dir, 'nodes.csv')
        df.to_csv(csv_path, index=False)
        meta_node = MetaNode(file_name=csv_path)
        node_data = NodeData.load_from_csv(
            meta_node, DefaultDataParser())
        assert np.array_equal(df['node_id'], node_data.id)
        assert len(node_data.data) == 0

        # common case
        df = pd.DataFrame({'node_id': np.arange(num_nodes),
                          'label': np.random.randint(3, size=num_nodes)})
        csv_path = os.path.join(test_dir, 'nodes.csv')
        df.to_csv(csv_path, index=False)
        meta_node = MetaNode(file_name=csv_path)
        node_data = NodeData.load_from_csv(
            meta_node, DefaultDataParser())
        assert np.array_equal(df['node_id'], node_data.id)
        assert len(node_data.data) == 1
        assert np.array_equal(df['label'], node_data.data['label'])
        assert np.array_equal(np.full(num_nodes, 0), node_data.graph_id)
        assert node_data.type == '_V'

        # add more fields into nodes.csv
        df = pd.DataFrame({'node_id': np.arange(num_nodes), 'label': np.random.randint(
            3, size=num_nodes), 'graph_id': np.full(num_nodes, 1)})
        csv_path = os.path.join(test_dir, 'nodes.csv')
        df.to_csv(csv_path, index=False)
        meta_node = MetaNode(file_name=csv_path)
        node_data = NodeData.load_from_csv(
            meta_node, DefaultDataParser())
        assert np.array_equal(df['node_id'], node_data.id)
        assert len(node_data.data) == 1
        assert np.array_equal(df['label'], node_data.data['label'])
        assert np.array_equal(df['graph_id'], node_data.graph_id)
        assert node_data.type == '_V'

        # required header is missing
        df = pd.DataFrame({'label': np.random.randint(3, size=num_nodes)})
        csv_path = os.path.join(test_dir, 'nodes.csv')
        df.to_csv(csv_path, index=False)
        meta_node = MetaNode(file_name=csv_path)
        expect_except = False
        try:
            NodeData.load_from_csv(
                meta_node, DefaultDataParser())
        except:
            expect_except = True
        assert expect_except


def _test_load_edge_data_from_csv():
    from dgl.data.csv_dataset_base import MetaEdge, EdgeData, DefaultDataParser
    with tempfile.TemporaryDirectory() as test_dir:
        num_nodes = 100
        num_edges = 1000
        # minimum
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           })
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
        meta_edge = MetaEdge(file_name=csv_path)
        edge_data = EdgeData.load_from_csv(
            meta_edge, DefaultDataParser())
        assert np.array_equal(df['src_id'], edge_data.src)
        assert np.array_equal(df['dst_id'], edge_data.dst)
        assert len(edge_data.data) == 0

        # common case
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           'label': np.random.randint(3, size=num_edges)})
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
        meta_edge = MetaEdge(file_name=csv_path)
        edge_data = EdgeData.load_from_csv(
            meta_edge, DefaultDataParser())
        assert np.array_equal(df['src_id'], edge_data.src)
        assert np.array_equal(df['dst_id'], edge_data.dst)
        assert len(edge_data.data) == 1
        assert np.array_equal(df['label'], edge_data.data['label'])
        assert np.array_equal(np.full(num_edges, 0), edge_data.graph_id)
        assert edge_data.type == ('_V', '_E', '_V')

        # add more fields into edges.csv
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           'graph_id': np.arange(num_edges),
                           'feat': np.random.randint(3, size=num_edges),
                           'label': np.random.randint(3, size=num_edges)})
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
        meta_edge = MetaEdge(file_name=csv_path)
        edge_data = EdgeData.load_from_csv(
            meta_edge, DefaultDataParser())
        assert np.array_equal(df['src_id'], edge_data.src)
        assert np.array_equal(df['dst_id'], edge_data.dst)
        assert len(edge_data.data) == 2
        assert np.array_equal(df['feat'], edge_data.data['feat'])
        assert np.array_equal(df['label'], edge_data.data['label'])
        assert np.array_equal(df['graph_id'], edge_data.graph_id)
        assert edge_data.type == ('_V', '_E', '_V')

        # required headers are missing
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           })
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
        meta_edge = MetaEdge(file_name=csv_path)
        expect_except = False
        try:
            EdgeData.load_from_csv(
                meta_edge, DefaultDataParser())
        except DGLError:
            expect_except = True
        assert expect_except
        df = pd.DataFrame({'dst_id': np.random.randint(num_nodes, size=num_edges),
                           })
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
        meta_edge = MetaEdge(file_name=csv_path)
        expect_except = False
        try:
            EdgeData.load_from_csv(
                meta_edge, DefaultDataParser())
        except DGLError:
            expect_except = True
        assert expect_except


def _test_load_graph_data_from_csv():
    from dgl.data.csv_dataset_base import MetaGraph, GraphData, DefaultDataParser
    with tempfile.TemporaryDirectory() as test_dir:
        num_graphs = 100
        # minimum
        df = pd.DataFrame({'graph_id': np.arange(num_graphs)})
        csv_path = os.path.join(test_dir, 'graph.csv')
        df.to_csv(csv_path, index=False)
        meta_graph = MetaGraph(file_name=csv_path)
        graph_data = GraphData.load_from_csv(
            meta_graph, DefaultDataParser())
        assert np.array_equal(df['graph_id'], graph_data.graph_id)
        assert len(graph_data.data) == 0

        # common case
        df = pd.DataFrame({'graph_id': np.arange(num_graphs),
                          'label': np.random.randint(3, size=num_graphs)})
        csv_path = os.path.join(test_dir, 'graph.csv')
        df.to_csv(csv_path, index=False)
        meta_graph = MetaGraph(file_name=csv_path)
        graph_data = GraphData.load_from_csv(
            meta_graph, DefaultDataParser())
        assert np.array_equal(df['graph_id'], graph_data.graph_id)
        assert len(graph_data.data) == 1
        assert np.array_equal(df['label'], graph_data.data['label'])

        # add more fields into graph.csv
        df = pd.DataFrame({'graph_id': np.arange(num_graphs),
                           'feat': np.random.randint(3, size=num_graphs),
                           'label': np.random.randint(3, size=num_graphs)})
        csv_path = os.path.join(test_dir, 'graph.csv')
        df.to_csv(csv_path, index=False)
        meta_graph = MetaGraph(file_name=csv_path)
        graph_data = GraphData.load_from_csv(
            meta_graph, DefaultDataParser())
        assert np.array_equal(df['graph_id'], graph_data.graph_id)
        assert len(graph_data.data) == 2
        assert np.array_equal(df['feat'], graph_data.data['feat'])
        assert np.array_equal(df['label'], graph_data.data['label'])

        # required header is missing
        df = pd.DataFrame({'label': np.random.randint(3, size=num_graphs)})
        csv_path = os.path.join(test_dir, 'graph.csv')
        df.to_csv(csv_path, index=False)
        meta_graph = MetaGraph(file_name=csv_path)
        expect_except = False
        try:
            GraphData.load_from_csv(
                meta_graph, DefaultDataParser())
        except DGLError:
            expect_except = True
        assert expect_except


def _test_CSVDataset_single():
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
        meta_yaml_data = {'version': '1.0.0', 'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path_0),
                                         'ntype': 'user',
                                         },
                                        {'file_name': os.path.basename(nodes_csv_path_1),
                                            'ntype': 'item',
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path_0),
                                         'etype': ['user', 'follow', 'user'],
                                         },
                                        {'file_name': os.path.basename(edges_csv_path_1),
                                         'etype': ['user', 'like', 'item'],
                                         }],
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_dims = 3
        feat_ndata = np.random.rand(num_nodes, num_dims)
        label_ndata = np.random.randint(2, size=num_nodes)
        df = pd.DataFrame({'node_id': np.arange(num_nodes),
                           'label': label_ndata,
                           'feat': [line.tolist() for line in feat_ndata],
                           })
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
        feat_edata = np.random.rand(num_edges, num_dims)
        label_edata = np.random.randint(2, size=num_edges)
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           'label': label_edata,
                           'feat': [line.tolist() for line in feat_edata],
                           })
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)

        # load CSVDataset
        for force_reload in [True, False]:
            if not force_reload:
                # remove original node data file to verify reload from cached files
                os.remove(nodes_csv_path_0)
                assert not os.path.exists(nodes_csv_path_0)
            csv_dataset = data.CSVDataset(
                test_dir, force_reload=force_reload)
            assert len(csv_dataset) == 1
            g = csv_dataset[0]
            assert not g.is_homogeneous
            assert csv_dataset.has_cache()
            for ntype in g.ntypes:
                assert g.num_nodes(ntype) == num_nodes
                assert F.array_equal(F.tensor(feat_ndata, dtype=F.float32),
                                     g.nodes[ntype].data['feat'])
                assert np.array_equal(label_ndata,
                                      F.asnumpy(g.nodes[ntype].data['label']))
            for etype in g.etypes:
                assert g.num_edges(etype) == num_edges
                assert F.array_equal(F.tensor(feat_edata, dtype=F.float32),
                                     g.edges[etype].data['feat'])
                assert np.array_equal(label_edata,
                                      F.asnumpy(g.edges[etype].data['label']))


def _test_CSVDataset_multiple():
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
        graph_csv_path = os.path.join(test_dir, "test_graph.csv")
        meta_yaml_data = {'version': '1.0.0', 'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path_0),
                                         'ntype': 'user',
                                         },
                                        {'file_name': os.path.basename(nodes_csv_path_1),
                                            'ntype': 'item',
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path_0),
                                         'etype': ['user', 'follow', 'user'],
                                         },
                                        {'file_name': os.path.basename(edges_csv_path_1),
                                         'etype': ['user', 'like', 'item'],
                                         }],
                          'graph_data': {'file_name': os.path.basename(graph_csv_path)}
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_graphs = 10
        num_dims = 3
        feat_ndata = np.random.rand(num_nodes*num_graphs, num_dims)
        label_ndata = np.random.randint(2, size=num_nodes*num_graphs)
        df = pd.DataFrame({'node_id': np.hstack([np.arange(num_nodes) for _ in range(num_graphs)]),
                           'label': label_ndata,
                           'feat': [line.tolist() for line in feat_ndata],
                           'graph_id': np.hstack([np.full(num_nodes, i) for i in range(num_graphs)])
                           })
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
        feat_edata = np.random.rand(num_edges*num_graphs, num_dims)
        label_edata = np.random.randint(2, size=num_edges*num_graphs)
        df = pd.DataFrame({'src_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'dst_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'label': label_edata,
                           'feat': [line.tolist() for line in feat_edata],
                           'graph_id': np.hstack([np.full(num_edges, i) for i in range(num_graphs)])
                           })
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)
        feat_gdata = np.random.rand(num_graphs, num_dims)
        label_gdata = np.random.randint(2, size=num_graphs)
        df = pd.DataFrame({'label': label_gdata,
                           'feat': [line.tolist() for line in feat_gdata],
                           'graph_id': np.arange(num_graphs)
                           })
        df.to_csv(graph_csv_path, index=False)

        # load CSVDataset with default node/edge/gdata_parser
        for force_reload in [True, False]:
            if not force_reload:
                # remove original node data file to verify reload from cached files
                os.remove(nodes_csv_path_0)
                assert not os.path.exists(nodes_csv_path_0)
            csv_dataset = data.CSVDataset(
                test_dir, force_reload=force_reload)
            assert len(csv_dataset) == num_graphs
            assert csv_dataset.has_cache()
            assert len(csv_dataset.data) == 2
            assert 'feat' in csv_dataset.data
            assert 'label' in csv_dataset.data
            assert F.array_equal(F.tensor(feat_gdata, dtype=F.float32),
                                 csv_dataset.data['feat'])
            for i, (g, g_data) in enumerate(csv_dataset):
                assert not g.is_homogeneous
                assert F.asnumpy(g_data['label']) == label_gdata[i]
                assert F.array_equal(g_data['feat'], F.tensor(feat_gdata[i], dtype=F.float32))
                for ntype in g.ntypes:
                    assert g.num_nodes(ntype) == num_nodes
                    assert F.array_equal(F.tensor(feat_ndata[i*num_nodes:(i+1)*num_nodes], dtype=F.float32),
                                         g.nodes[ntype].data['feat'])
                    assert np.array_equal(label_ndata[i*num_nodes:(i+1)*num_nodes],
                                          F.asnumpy(g.nodes[ntype].data['label']))
                for etype in g.etypes:
                    assert g.num_edges(etype) == num_edges
                    assert F.array_equal(F.tensor(feat_edata[i*num_edges:(i+1)*num_edges], dtype=F.float32),
                                         g.edges[etype].data['feat'])
                    assert np.array_equal(label_edata[i*num_edges:(i+1)*num_edges],
                                          F.asnumpy(g.edges[etype].data['label']))


def _test_CSVDataset_customized_data_parser():
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
        graph_csv_path = os.path.join(test_dir, "test_graph.csv")
        meta_yaml_data = {'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path_0),
                                         'ntype': 'user',
                                         },
                                        {'file_name': os.path.basename(nodes_csv_path_1),
                                            'ntype': 'item',
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path_0),
                                         'etype': ['user', 'follow', 'user'],
                                         },
                                        {'file_name': os.path.basename(edges_csv_path_1),
                                         'etype': ['user', 'like', 'item'],
                                         }],
                          'graph_data': {'file_name': os.path.basename(graph_csv_path)}
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_graphs = 10
        label_ndata = np.random.randint(2, size=num_nodes*num_graphs)
        df = pd.DataFrame({'node_id': np.hstack([np.arange(num_nodes) for _ in range(num_graphs)]),
                           'label': label_ndata,
                           'graph_id': np.hstack([np.full(num_nodes, i) for i in range(num_graphs)])
                           })
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
        label_edata = np.random.randint(2, size=num_edges*num_graphs)
        df = pd.DataFrame({'src_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'dst_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'label': label_edata,
                           'graph_id': np.hstack([np.full(num_edges, i) for i in range(num_graphs)])
                           })
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)
        label_gdata = np.random.randint(2, size=num_graphs)
        df = pd.DataFrame({'label': label_gdata,
                           'graph_id': np.arange(num_graphs)
                           })
        df.to_csv(graph_csv_path, index=False)

        class CustDataParser:
            def __call__(self, df):
                data = {}
                for header in df:
                    dt = df[header].to_numpy().squeeze()
                    if header == 'label':
                        dt += 2
                    data[header] = dt
                return data
        # load CSVDataset with customized node/edge/gdata_parser
        # specify via dict[ntype/etype, callable]
        csv_dataset = data.CSVDataset(
            test_dir, force_reload=True, ndata_parser={'user': CustDataParser()},
            edata_parser={('user', 'like', 'item'): CustDataParser()},
            gdata_parser=CustDataParser())
        assert len(csv_dataset) == num_graphs
        assert len(csv_dataset.data) == 1
        assert 'label' in csv_dataset.data
        for i, (g, g_data) in enumerate(csv_dataset):
            assert not g.is_homogeneous
            assert F.asnumpy(g_data) == label_gdata[i] + 2
            for ntype in g.ntypes:
                assert g.num_nodes(ntype) == num_nodes
                offset = 2 if ntype == 'user' else 0
                assert np.array_equal(label_ndata[i*num_nodes:(i+1)*num_nodes]+offset,
                                    F.asnumpy(g.nodes[ntype].data['label']))
            for etype in g.etypes:
                assert g.num_edges(etype) == num_edges
                offset = 2 if etype == 'like' else 0
                assert np.array_equal(label_edata[i*num_edges:(i+1)*num_edges]+offset,
                                    F.asnumpy(g.edges[etype].data['label']))
        # specify via callable
        csv_dataset = data.CSVDataset(
            test_dir, force_reload=True, ndata_parser=CustDataParser(),
            edata_parser=CustDataParser(), gdata_parser=CustDataParser())
        assert len(csv_dataset) == num_graphs
        assert len(csv_dataset.data) == 1
        assert 'label' in csv_dataset.data
        for i, (g, g_data) in enumerate(csv_dataset):
            assert not g.is_homogeneous
            assert F.asnumpy(g_data) == label_gdata[i] + 2
            for ntype in g.ntypes:
                assert g.num_nodes(ntype) == num_nodes
                offset = 2
                assert np.array_equal(label_ndata[i*num_nodes:(i+1)*num_nodes]+offset,
                                    F.asnumpy(g.nodes[ntype].data['label']))
            for etype in g.etypes:
                assert g.num_edges(etype) == num_edges
                offset = 2
                assert np.array_equal(label_edata[i*num_edges:(i+1)*num_edges]+offset,
                                    F.asnumpy(g.edges[etype].data['label']))


def _test_NodeEdgeGraphData():
    from dgl.data.csv_dataset_base import NodeData, EdgeData, GraphData
    # NodeData basics
    num_nodes = 100
lisj's avatar
lisj committed
1194
    node_ids = np.arange(num_nodes, dtype=float)
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
    ndata = NodeData(node_ids, {})
    assert np.array_equal(ndata.id, node_ids)
    assert len(ndata.data) == 0
    assert ndata.type == '_V'
    assert np.array_equal(ndata.graph_id, np.full(num_nodes, 0))
    # NodeData more
    data = {'feat': np.random.rand(num_nodes, 3)}
    graph_id = np.arange(num_nodes)
    ndata = NodeData(node_ids, data, type='user', graph_id=graph_id)
    assert ndata.type == 'user'
    assert np.array_equal(ndata.graph_id, graph_id)
    assert len(ndata.data) == len(data)
    for k, v in data.items():
        assert k in ndata.data
        assert np.array_equal(ndata.data[k], v)
    # NodeData except
    expect_except = False
    try:
        NodeData(np.arange(num_nodes), {'feat': np.random.rand(
            num_nodes+1, 3)}, graph_id=np.arange(num_nodes-1))
    except:
        expect_except = True
    assert expect_except

    # EdgeData basics
    num_nodes = 100
    num_edges = 1000
    src_ids = np.random.randint(num_nodes, size=num_edges)
    dst_ids = np.random.randint(num_nodes, size=num_edges)
    edata = EdgeData(src_ids, dst_ids, {})
    assert np.array_equal(edata.src, src_ids)
    assert np.array_equal(edata.dst, dst_ids)
    assert edata.type == ('_V', '_E', '_V')
    assert len(edata.data) == 0
    assert np.array_equal(edata.graph_id, np.full(num_edges, 0))
    # EdageData more
lisj's avatar
lisj committed
1231
1232
    src_ids = np.random.randint(num_nodes, size=num_edges).astype(float)
    dst_ids = np.random.randint(num_nodes, size=num_edges).astype(float)
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
    data = {'feat': np.random.rand(num_edges, 3)}
    etype = ('user', 'like', 'item')
    graph_ids = np.arange(num_edges)
    edata = EdgeData(src_ids, dst_ids, data,
                            type=etype, graph_id=graph_ids)
    assert np.array_equal(edata.src, src_ids)
    assert np.array_equal(edata.dst, dst_ids)
    assert edata.type == etype
    assert len(edata.data) == len(data)
    for k, v in data.items():
        assert k in edata.data
        assert np.array_equal(edata.data[k], v)
    assert np.array_equal(edata.graph_id, graph_ids)
    # EdgeData except
    expect_except = False
    try:
        EdgeData(np.arange(num_edges), np.arange(
            num_edges+1), {'feat': np.random.rand(num_edges-1, 3)}, graph_id=np.arange(num_edges+2))
    except:
        expect_except = True
    assert expect_except

    # GraphData basics
    num_graphs = 10
    graph_ids = np.arange(num_graphs)
    gdata = GraphData(graph_ids, {})
    assert np.array_equal(gdata.graph_id, graph_ids)
    assert len(gdata.data) == 0
    # GraphData more
lisj's avatar
lisj committed
1262
    graph_ids = np.arange(num_graphs).astype(float)
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
    data = {'feat': np.random.rand(num_graphs, 3)}
    gdata = GraphData(graph_ids, data)
    assert np.array_equal(gdata.graph_id, graph_ids)
    assert len(gdata.data) == len(data)
    for k, v in data.items():
        assert k in gdata.data
        assert np.array_equal(gdata.data[k], v)


@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_csvdataset():
    _test_NodeEdgeGraphData()
    _test_construct_graphs_node_ids()
    _test_construct_graphs_homo()
    _test_construct_graphs_hetero()
    _test_construct_graphs_multiple()
    _test_DefaultDataParser()
    _test_load_yaml_with_sanity_check()
    _test_load_node_data_from_csv()
    _test_load_edge_data_from_csv()
    _test_load_graph_data_from_csv()
    _test_CSVDataset_single()
    _test_CSVDataset_multiple()
    _test_CSVDataset_customized_data_parser()

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_add_nodepred_split():
    dataset = data.AmazonCoBuyComputerDataset()
    print('train_mask' in dataset[0].ndata)
    data.utils.add_nodepred_split(dataset, [0.8, 0.1, 0.1])
    assert 'train_mask' in dataset[0].ndata

    dataset = data.AIFBDataset()
    print('train_mask' in dataset[0].nodes['Publikationen'].data)
    data.utils.add_nodepred_split(dataset, [0.8, 0.1, 0.1], ntype='Publikationen')
    assert 'train_mask' in dataset[0].nodes['Publikationen'].data

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_as_nodepred1():
    ds = data.AmazonCoBuyComputerDataset()
    print('train_mask' in ds[0].ndata)
    new_ds = data.AsNodePredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1
    assert new_ds[0].num_nodes() == ds[0].num_nodes()
    assert new_ds[0].num_edges() == ds[0].num_edges()
    assert 'train_mask' in new_ds[0].ndata
    assert F.array_equal(new_ds.train_idx, F.nonzero_1d(
        new_ds[0].ndata['train_mask']))
    assert F.array_equal(new_ds.val_idx, F.nonzero_1d(
        new_ds[0].ndata['val_mask']))
    assert F.array_equal(new_ds.test_idx, F.nonzero_1d(
        new_ds[0].ndata['test_mask']))

    ds = data.AIFBDataset()
    print('train_mask' in ds[0].nodes['Personen'].data)
    new_ds = data.AsNodePredDataset(ds, [0.8, 0.1, 0.1], 'Personen', verbose=True)
    assert len(new_ds) == 1
    assert new_ds[0].ntypes == ds[0].ntypes
    assert new_ds[0].canonical_etypes == ds[0].canonical_etypes
    assert 'train_mask' in new_ds[0].nodes['Personen'].data
    assert F.array_equal(new_ds.train_idx, F.nonzero_1d(
        new_ds[0].nodes['Personen'].data['train_mask']))
    assert F.array_equal(new_ds.val_idx, F.nonzero_1d(
        new_ds[0].nodes['Personen'].data['val_mask']))
    assert F.array_equal(new_ds.test_idx, F.nonzero_1d(
        new_ds[0].nodes['Personen'].data['test_mask']))

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_as_nodepred2():
    # test proper reprocessing

    # create
    ds = data.AsNodePredDataset(data.AmazonCoBuyComputerDataset(), [0.8, 0.1, 0.1])
    assert F.sum(F.astype(ds[0].ndata['train_mask'], F.int32), 0) == int(ds[0].num_nodes() * 0.8)
    assert len(ds.train_idx) == int(ds[0].num_nodes() * 0.8)
    # read from cache
    ds = data.AsNodePredDataset(data.AmazonCoBuyComputerDataset(), [0.8, 0.1, 0.1])
    assert F.sum(F.astype(ds[0].ndata['train_mask'], F.int32), 0) == int(ds[0].num_nodes() * 0.8)
    assert len(ds.train_idx) == int(ds[0].num_nodes() * 0.8)
    # invalid cache, re-read
    ds = data.AsNodePredDataset(data.AmazonCoBuyComputerDataset(), [0.1, 0.1, 0.8])
    assert F.sum(F.astype(ds[0].ndata['train_mask'], F.int32), 0) == int(ds[0].num_nodes() * 0.1)
    assert len(ds.train_idx) == int(ds[0].num_nodes() * 0.1)

    # create
    ds = data.AsNodePredDataset(data.AIFBDataset(), [0.8, 0.1, 0.1], 'Personen', verbose=True)
    assert F.sum(F.astype(ds[0].nodes['Personen'].data['train_mask'], F.int32), 0) == int(ds[0].num_nodes('Personen') * 0.8)
    assert len(ds.train_idx) == int(ds[0].num_nodes('Personen') * 0.8)
    # read from cache
    ds = data.AsNodePredDataset(data.AIFBDataset(), [0.8, 0.1, 0.1], 'Personen', verbose=True)
    assert F.sum(F.astype(ds[0].nodes['Personen'].data['train_mask'], F.int32), 0) == int(ds[0].num_nodes('Personen') * 0.8)
    assert len(ds.train_idx) == int(ds[0].num_nodes('Personen') * 0.8)
    # invalid cache, re-read
    ds = data.AsNodePredDataset(data.AIFBDataset(), [0.1, 0.1, 0.8], 'Personen', verbose=True)
    assert F.sum(F.astype(ds[0].nodes['Personen'].data['train_mask'], F.int32), 0) == int(ds[0].num_nodes('Personen') * 0.1)
    assert len(ds.train_idx) == int(ds[0].num_nodes('Personen') * 0.1)

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason="ogb only supports pytorch")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_as_nodepred_ogb():
    from ogb.nodeproppred import DglNodePropPredDataset
    ds = data.AsNodePredDataset(DglNodePropPredDataset("ogbn-arxiv"), split_ratio=None, verbose=True)
    split = DglNodePropPredDataset("ogbn-arxiv").get_idx_split()
    train_idx, val_idx, test_idx = split['train'], split['valid'], split['test']
    assert F.array_equal(ds.train_idx, F.tensor(train_idx))
    assert F.array_equal(ds.val_idx, F.tensor(val_idx))
    assert F.array_equal(ds.test_idx, F.tensor(test_idx))
    # force generate new split
    ds = data.AsNodePredDataset(DglNodePropPredDataset("ogbn-arxiv"), split_ratio=[0.7, 0.2, 0.1], verbose=True)

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_as_linkpred():
    # create
    ds = data.AsLinkPredDataset(data.CoraGraphDataset(), split_ratio=[0.8, 0.1, 0.1], neg_ratio=1, verbose=True)
    # Cora has 10556 edges, 10% test edges can be 1057
    assert ds.test_edges[0][0].shape[0] == 1057
    # negative samples, not guaranteed, so the assert is in a relaxed range
    assert 1000 <= ds.test_edges[1][0].shape[0] <= 1057
    # read from cache
    ds = data.AsLinkPredDataset(data.CoraGraphDataset(), split_ratio=[0.7, 0.1, 0.2], neg_ratio=2, verbose=True)
    assert ds.test_edges[0][0].shape[0] == 2112
    # negative samples, not guaranteed to be ratio 2, so the assert is in a relaxed range
    assert 4000 < ds.test_edges[1][0].shape[0] <= 4224


@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason="ogb only supports pytorch")
def test_as_linkpred_ogb():
    from ogb.linkproppred import DglLinkPropPredDataset
    ds = data.AsLinkPredDataset(DglLinkPropPredDataset("ogbl-collab"), split_ratio=None, verbose=True)
    # original dataset has 46329 test edges
    assert ds.test_edges[0][0].shape[0] == 46329
    # force generate new split
    ds = data.AsLinkPredDataset(DglLinkPropPredDataset("ogbl-collab"), split_ratio=[0.7, 0.2, 0.1], verbose=True)
    assert ds.test_edges[0][0].shape[0] == 235812

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_as_nodepred_csvdataset():
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path = os.path.join(test_dir, "test_edges.csv")
        nodes_csv_path = os.path.join(test_dir, "test_nodes.csv")
        meta_yaml_data = {'version': '1.0.0', 'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path)
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path)
                                         }],
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_dims = 3
        num_classes = num_nodes
        feat_ndata = np.random.rand(num_nodes, num_dims)
        label_ndata = np.arange(num_classes)
        df = pd.DataFrame({'node_id': np.arange(num_nodes),
                           'label': label_ndata,
                           'feat': [line.tolist() for line in feat_ndata],
                           })
        df.to_csv(nodes_csv_path, index=False)
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           })
        df.to_csv(edges_csv_path, index=False)

        ds = data.CSVDataset(test_dir, force_reload=True)
        assert 'feat' in ds[0].ndata
        assert 'label' in ds[0].ndata
        assert 'train_mask' not in ds[0].ndata
        assert not hasattr(ds[0], 'num_classes')
        new_ds = data.AsNodePredDataset(ds, split_ratio=[0.8, 0.1, 0.1], force_reload=True)
        assert new_ds.num_classes == num_classes
        assert 'feat' in new_ds[0].ndata
        assert 'label' in new_ds[0].ndata
        assert 'train_mask' in new_ds[0].ndata

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_as_graphpred():
    ds = data.GINDataset(name='MUTAG', self_loop=True)
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 188
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

    ds = data.FakeNewsDataset('politifact', 'profile')
    new_ds = data.AsGraphPredDataset(ds, verbose=True)
    assert len(new_ds) == 314
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

    ds = data.QM7bDataset()
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 7211
    assert new_ds.num_tasks == 14
    assert new_ds.num_classes is None

    ds = data.QM9Dataset(label_keys=['mu', 'gap'])
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 130831
    assert new_ds.num_tasks == 2
    assert new_ds.num_classes is None

    ds = data.QM9EdgeDataset(label_keys=['mu', 'alpha'])
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 130831
    assert new_ds.num_tasks == 2
    assert new_ds.num_classes is None

    ds = data.TUDataset('DD')
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1178
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

    ds = data.LegacyTUDataset('DD')
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1178
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

    ds = data.BA2MotifDataset()
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1000
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_as_graphpred_reprocess():
    ds = data.AsGraphPredDataset(data.GINDataset(name='MUTAG', self_loop=True), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
    ds = data.AsGraphPredDataset(data.GINDataset(name='MUTAG', self_loop=True), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
    ds = data.AsGraphPredDataset(data.GINDataset(name='MUTAG', self_loop=True), [0.1, 0.1, 0.8])
    assert len(ds.train_idx) == int(len(ds) * 0.1)

    ds = data.AsGraphPredDataset(data.FakeNewsDataset('politifact', 'profile'), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
    ds = data.AsGraphPredDataset(data.FakeNewsDataset('politifact', 'profile'), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
    ds = data.AsGraphPredDataset(data.FakeNewsDataset('politifact', 'profile'), [0.1, 0.1, 0.8])
    assert len(ds.train_idx) == int(len(ds) * 0.1)

    ds = data.AsGraphPredDataset(data.QM7bDataset(), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
    ds = data.AsGraphPredDataset(data.QM7bDataset(), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
    ds = data.AsGraphPredDataset(data.QM7bDataset(), [0.1, 0.1, 0.8])
    assert len(ds.train_idx) == int(len(ds) * 0.1)

    ds = data.AsGraphPredDataset(data.QM9Dataset(label_keys=['mu', 'gap']), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
    ds = data.AsGraphPredDataset(data.QM9Dataset(label_keys=['mu', 'gap']), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
    ds = data.AsGraphPredDataset(data.QM9Dataset(label_keys=['mu', 'gap']), [0.1, 0.1, 0.8])
    assert len(ds.train_idx) == int(len(ds) * 0.1)

    ds = data.AsGraphPredDataset(data.QM9EdgeDataset(label_keys=['mu', 'alpha']), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
    ds = data.AsGraphPredDataset(data.QM9EdgeDataset(label_keys=['mu', 'alpha']), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
    ds = data.AsGraphPredDataset(data.QM9EdgeDataset(label_keys=['mu', 'alpha']), [0.1, 0.1, 0.8])
    assert len(ds.train_idx) == int(len(ds) * 0.1)

    ds = data.AsGraphPredDataset(data.TUDataset('DD'), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
    ds = data.AsGraphPredDataset(data.TUDataset('DD'), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
    ds = data.AsGraphPredDataset(data.TUDataset('DD'), [0.1, 0.1, 0.8])
    assert len(ds.train_idx) == int(len(ds) * 0.1)

    ds = data.AsGraphPredDataset(data.LegacyTUDataset('DD'), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
    ds = data.AsGraphPredDataset(data.LegacyTUDataset('DD'), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
    ds = data.AsGraphPredDataset(data.LegacyTUDataset('DD'), [0.1, 0.1, 0.8])
    assert len(ds.train_idx) == int(len(ds) * 0.1)

    ds = data.AsGraphPredDataset(data.BA2MotifDataset(), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
    ds = data.AsGraphPredDataset(data.BA2MotifDataset(), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
    ds = data.AsGraphPredDataset(data.BA2MotifDataset(), [0.1, 0.1, 0.8])
    assert len(ds.train_idx) == int(len(ds) * 0.1)

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason="ogb only supports pytorch")
def test_as_graphpred_ogb():
    from ogb.graphproppred import DglGraphPropPredDataset
    ds = data.AsGraphPredDataset(DglGraphPropPredDataset('ogbg-molhiv'),
                                 split_ratio=None, verbose=True)
    assert len(ds.train_idx) == 32901
    # force generate new split
    ds = data.AsGraphPredDataset(DglGraphPropPredDataset('ogbg-molhiv'),
                                 split_ratio=[0.6, 0.2, 0.2], verbose=True)
    assert len(ds.train_idx) == 24676

if __name__ == '__main__':
    test_minigc()
    test_gin()
    test_data_hash()
    test_tudataset_regression()
    test_fraud()
    test_fakenews()
    test_extract_archive()
    test_csvdataset()
    test_add_nodepred_split()
    test_as_nodepred1()
    test_as_nodepred2()
    test_as_nodepred_csvdataset()