twirls.py 6.13 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
"""
[Graph Neural Networks Inspired by Classical Iterative Algorithms]
(https://arxiv.org/pdf/2103.06064.pdf)

This example shows a simplified version of the TWIRLS model proposed
in the paper. It implements two variants. One is the basic iterative
graph diffusion algorithm. The other is an advanced implementation
with attention.
"""

import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam

from dgl.data import CoraGraphDataset
import dgl.mock_sparse as dglsp


class MLP(nn.Module):
    def __init__(self, in_size, hidden_size):
        super().__init__()
        self.linear_1 = nn.Linear(in_size, hidden_size)
        self.linear_2 = nn.Linear(hidden_size, hidden_size)
        self.dropout = nn.Dropout(0.8)

    def forward(self, X):
        H = self.linear_1(X)
        H = F.relu(H)
        H = self.dropout(H)
        H = self.linear_2(H)
        return H


################################################################################
# (HIGHLIGHT) Use DGL sparse API to implement the iterative graph diffusion
# algorithm.
################################################################################
class TWIRLS(nn.Module):
    def __init__(
        self,
        in_size,
        out_size,
        hidden_size=128,
        num_steps=16,
        lam=1.0,
        alpha=0.5,
    ):
        super().__init__()
        self.num_steps = num_steps
        self.lam = lam
        self.alpha = alpha
        self.mlp = MLP(in_size, hidden_size)
        self.linear_out = nn.Linear(hidden_size, out_size)

    def forward(self, A, X):
        # Compute Y = Y0 = f(X; W) using a two-layer MLP.
        Y = Y0 = self.mlp(X)

        # Compute diagonal matrix D_tild.
        I = dglsp.identity(A.shape, device=A.device)
        D_tild = self.lam * dglsp.diag(A.sum(1)) + I

        # Iteratively compute new Y by equation (6) in the paper.
        for k in range(self.num_steps):
            Y_hat = self.lam * A @ Y + Y0
            # The inverse of a diagonal matrix inverses its diagonal values.
            Y = (1 - self.alpha) * Y + self.alpha * (D_tild**-1) @ Y_hat

        # Apply a linear layer on the final output.
        return self.linear_out(Y)


################################################################################
# (HIGHLIGHT) Implementation of the advanced TWIRLS model with attention
# to show the usage of differentiable weighted sparse matrix.
################################################################################
class TWIRLSWithAttention(nn.Module):
    def __init__(
        self,
        in_size,
        out_size,
        hidden_size=128,
        num_steps=16,
        lam=1.0,
        alpha=0.5,
    ):
        super().__init__()
        self.num_steps = num_steps
        self.lam = lam
        self.alpha = alpha
        self.mlp = MLP(in_size, hidden_size)
        self.linear_out = nn.Linear(hidden_size, out_size)

    def forward(self, A, X):
        # Compute Y = Y0 = f(X; W) using a two-layer MLP.
        Y = Y0 = self.mlp(X)

        # Compute diagonal matrix D_tild.
        I = dglsp.identity(A.shape, device=A.device)
        D_tild = self.lam * dglsp.diag(A.sum(1)) + I

        # Conduct half of the diffusion steps.
        for k in range(self.num_steps // 2):
            Y_hat = self.lam * A @ Y + Y0
            Y = (1 - self.alpha) * Y + self.alpha * (D_tild**-1) @ Y_hat

        # Calculate attention weight by equation (25) in the paper.
        Y_i = Y[A.row]
        Y_j = Y[A.col]
        norm_ij = torch.linalg.vector_norm(Y_i - Y_j, dim=1)
        # Bound the attention value within [0.0, 1.0).
        gamma_ij = torch.clamp(0.5 / (norm_ij + 1e-7), min=0.0, max=1.0)
        # Create a new adjacency matrix with the new weight.
        A = dglsp.val_like(A, gamma_ij)
        # Recompute D_tild.
        D_tild = self.lam * dglsp.diag(A.sum(1)) + I

        # Conduct the other half of the diffusion steps.
        for k in range(self.num_steps // 2):
            Y_hat = self.lam * A @ Y + Y0
            Y = (1 - self.alpha) * Y + self.alpha * (D_tild**-1) @ Y_hat

        # Apply a linear layer on the final output.
        return self.linear_out(Y)


def evaluate(g, pred):
    model.eval()
    label = g.ndata["label"]
    val_mask = g.ndata["val_mask"]
    test_mask = g.ndata["test_mask"]

    # Compute accuracy on validation/test set.
    val_acc = (pred[val_mask] == label[val_mask]).float().mean()
    test_acc = (pred[test_mask] == label[test_mask]).float().mean()
    return val_acc, test_acc


def train(g, model, A, X):
    labels = g.ndata["label"]
    train_mask = g.ndata["train_mask"]
    optimizer = Adam(model.parameters(), lr=5e-4)

    for epoch in range(300):
        model.train()
        # Forward.
        logits = model(A, X)

        # Compute loss with nodes in training set.
        loss = F.cross_entropy(logits[train_mask], labels[train_mask])

        # Backward.
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # Compute prediction.
        pred = logits.argmax(1)

        # Evaluate the prediction.
        val_acc, test_acc = evaluate(g, pred)
        print(
            f"In epoch {epoch}, loss: {loss:.3f}, val acc: {val_acc:.3f}, test"
            f" acc: {test_acc:.3f}"
        )


if __name__ == "__main__":
    parser = argparse.ArgumentParser("TWIRLS example in DGL Sparse.")
    parser.add_argument(
        "--attention", action="store_true", help="Use TWIRLS with attention."
    )
    args = parser.parse_args()
    # If CUDA is available, use GPU to accelerate the training, use CPU
    # otherwise.
    dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    # Load graph from the existing dataset.
    dataset = CoraGraphDataset()
    g = dataset[0].to(dev)
    X = g.ndata["feat"]

    # Create the sparse adjacency matrix A.
    src, dst = g.edges()
    N = g.num_nodes()
    A = dglsp.create_from_coo(dst, src, shape=(N, N))

    # Create the TWIRLS model.
    in_size = X.shape[1]
    out_size = dataset.num_classes
    if args.attention:
        model = TWIRLSWithAttention(in_size, out_size).to(dev)
    else:
        model = TWIRLS(in_size, out_size).to(dev)

    # Kick off training.
    train(g, model, A, X)