run_dist_objects.py 14.1 KB
Newer Older
1
import os
2

3
import numpy as np
4
5

import dgl
6
import dgl.backend as F
7
8
import json
from dgl.distributed import load_partition_book, node_split, edge_split
9

10
11
12
13
14
15
16
17
18
19
20
21
mode = os.environ.get("DIST_DGL_TEST_MODE", "")
graph_name = os.environ.get("DIST_DGL_TEST_GRAPH_NAME", "random_test_graph")
num_part = int(os.environ.get("DIST_DGL_TEST_NUM_PART"))
num_servers_per_machine = int(os.environ.get("DIST_DGL_TEST_NUM_SERVER"))
num_client_per_machine = int(os.environ.get("DIST_DGL_TEST_NUM_CLIENT"))
shared_workspace = os.environ.get("DIST_DGL_TEST_WORKSPACE")
graph_path = os.environ.get("DIST_DGL_TEST_GRAPH_PATH")
part_id = int(os.environ.get("DIST_DGL_TEST_PART_ID"))
net_type = os.environ.get("DIST_DGL_TEST_NET_TYPE")
ip_config = os.environ.get("DIST_DGL_TEST_IP_CONFIG", "ip_config.txt")

os.environ["DGL_DIST_MODE"] = "distributed"
22

23
24
25
26
27
28
29
def batched_assert_zero(tensor, size):
    BATCH_SIZE=2**16
    curr_pos = 0
    while curr_pos < size:
        end = min(curr_pos + BATCH_SIZE, size)
        assert F.sum(tensor[F.arange(curr_pos, end)], 0) == 0
        curr_pos = end
30
31
32
33

def zeros_init(shape, dtype):
    return F.zeros(shape, dtype=dtype, ctx=F.cpu())

34
35
def rand_init(shape, dtype):
    return F.tensor((np.random.randint(0, 100, size=shape) > 30), dtype=dtype)
36
37
38
39
40
41
42
43
44

def run_server(
    graph_name,
    server_id,
    server_count,
    num_clients,
    shared_mem,
    keep_alive=False,
):
45
    # server_count = num_servers_per_machine
46
47
48
49
50
51
52
53
54
55
56
57
    g = dgl.distributed.DistGraphServer(
        server_id,
        ip_config,
        server_count,
        num_clients,
        graph_path + "/{}.json".format(graph_name),
        disable_shared_mem=not shared_mem,
        graph_format=["csc", "coo"],
        keep_alive=keep_alive,
        net_type=net_type,
    )
    print("start server", server_id)
58
59
    g.start()

60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

##########################################
############### DistGraph ###############
##########################################

def node_split_test(g, force_even, ntype='_N'):
    gpb = g.get_partition_book()

    selected_nodes_dist_tensor = dgl.distributed.DistTensor([g.number_of_nodes(ntype)], F.uint8, init_func=rand_init)

    nodes = node_split(selected_nodes_dist_tensor, gpb, ntype=ntype, force_even=force_even)
    g.barrier()

    selected_nodes_dist_tensor[nodes] = F.astype(F.zeros_like(nodes), selected_nodes_dist_tensor.dtype)
    g.barrier()

    if g.rank() == 0:
        batched_assert_zero(selected_nodes_dist_tensor, g.number_of_nodes(ntype))

    g.barrier()

def edge_split_test(g, force_even, etype='_E'):
    gpb = g.get_partition_book()

    selected_edges_dist_tensor = dgl.distributed.DistTensor([g.number_of_edges(etype)], F.uint8, init_func=rand_init)

    edges = edge_split(selected_edges_dist_tensor, gpb, etype=etype, force_even=force_even)
    g.barrier()

    selected_edges_dist_tensor[edges] = F.astype(F.zeros_like(edges), selected_edges_dist_tensor.dtype)
    g.barrier()

    if g.rank() == 0:
        batched_assert_zero(selected_edges_dist_tensor, g.number_of_edges(etype))

    g.barrier()

def test_dist_graph(g):
    gpb_path = graph_path + '/{}.json'.format(graph_name)
    with open(gpb_path) as conf_f:
        part_metadata = json.load(conf_f)
    assert 'num_nodes' in part_metadata
    assert 'num_edges' in part_metadata
    num_nodes = part_metadata['num_nodes']
    num_edges = part_metadata['num_edges']

    assert g.number_of_nodes() == num_nodes
    assert g.number_of_edges() == num_edges

    num_nodes = {ntype : g.num_nodes(ntype) for ntype in g.ntypes}
    num_edges = {etype : g.num_edges(etype) for etype in g.etypes}

    for key, n_nodes in num_nodes.items():
        assert g.number_of_nodes(key) == n_nodes
        node_split_test(g, force_even=False, ntype=key)
        node_split_test(g, force_even=True,  ntype=key)

    for key, n_edges in num_edges.items():
        assert g.number_of_edges(key) == n_edges
        edge_split_test(g, force_even=False, etype=key)
        edge_split_test(g, force_even=True,  etype=key)

##########################################
########### DistGraphServices ###########
##########################################
    nids = F.arange(0, 16)

    # Test in_degrees
    orig_in_degrees = g.ndata['in_degrees']
    local_in_degrees = g.in_degrees(nids)
    F.allclose(local_in_degrees, orig_in_degrees[nids])

    # Test out_degrees
    orig_out_degrees = g.ndata['out_degrees']
    local_out_degrees = g.out_degrees(nids)
    F.allclose(local_out_degrees, orig_out_degrees[nids])

    find_edges_test(g)
    edge_subgraph_test(g)
    sample_neighbors_test(g)

def find_edges_test(g, orig_nid_map):
    etypes = g.canonical_etypes

    etype_eids_uv_map = dict()
    for u_type, etype, v_type in etypes:
        orig_u =  g.edges[etype].data['edge_u']
        orig_v =  g.edges[etype].data['edge_v']
        eids = F.tensor(np.random.randint(g.number_of_edges(etype), size=100))
        u, v = g.find_edges(eids, etype=etype)
        assert F.allclose(orig_nid_map[u_type][u], orig_u[eids])
        assert F.allclose(orig_nid_map[v_type][v], orig_v[eids])
        etype_eids_uv_map[etype] = (eids, F.cat([u, v], dim=0))
    return etype_eids_uv_map

def edge_subgraph_test(g, etype_eids_uv_map):
    etypes = g.canonical_etypes
    all_eids = dict()
    for t in etypes:
        all_eids[t] = etype_eids_uv_map[t[1]][0]

    sg = g.edge_subgraph(all_eids)
    for t in etypes:
        assert sg.number_of_edges(t[1]) == len(all_eids[t])
        assert F.allclose(sg.edges[t].data[dgl.EID], all_eids[t])

    for u_type, etype, v_type in etypes:
        uv = etype_eids_uv_map[etype][1]
        sg_u_nids = sg.nodes[u_type].data[dgl.NID]
        sg_v_nids = sg.nodes[v_type].data[dgl.NID]
        sg_uv = F.cat([sg_u_nids, sg_v_nids], dim=0)
        for node_id in uv:
            assert node_id in sg_uv

def sample_neighbors_with_args(g, size, fanout):
    num_nodes = {ntype : g.num_nodes(ntype) for ntype in g.ntypes}
    etypes = g.canonical_etypes

    sampled_graph = g.sample_neighbors({ntype : np.random.randint(0, n, size=size) for ntype, n in num_nodes.items()}, fanout)

    for ntype, n in num_nodes.items():
        assert sampled_graph.number_of_nodes(ntype) == n
    for t in etypes:
        src, dst = sampled_graph.edges(etype=t)
        eids = sampled_graph.edges[t].data[dgl.EID]
        dist_u, dist_v = g.find_edges(eids, etype=t[1])
        assert F.allclose(dist_u, src)
        assert F.allclose(dist_v, dst)

def sample_neighbors_test(g):
    sample_neighbors_with_args(g, size=1024, fanout=3)
    sample_neighbors_with_args(g, size=1, fanout=10)
    sample_neighbors_with_args(g, size=1024, fanout=2)
    sample_neighbors_with_args(g, size=10, fanout=-1)
    sample_neighbors_with_args(g, size=2**10, fanout=1)
    sample_neighbors_with_args(g, size=2**12, fanout=1)

def test_dist_graph_services(g):
    num_nodes = {ntype : g.num_nodes(ntype) for ntype in g.ntypes}

    orig_nid_map = dict()
    dtype =  g.edges[g.etypes[0]].data['edge_u'].dtype
    for ntype, _ in num_nodes.items():
        orig_nid = F.tensor(np.load(graph_path + f'/orig_nid_array_{ntype}.npy'), dtype)
        orig_nid_map[ntype] = orig_nid

    etype_eids_uv_map = find_edges_test(g, orig_nid_map)
    edge_subgraph_test(g, etype_eids_uv_map)
    sample_neighbors_test(g)

211
212
213
214
##########################################
############### DistTensor ###############
##########################################

215

216
217
def dist_tensor_test_sanity(data_shape, name=None):
    local_rank = dgl.distributed.get_rank() % num_client_per_machine
218
219
220
    dist_ten = dgl.distributed.DistTensor(
        data_shape, F.int32, init_func=zeros_init, name=name
    )
221
222
    # arbitrary value
    stride = 3
223
224
    pos = (part_id // 2) * num_client_per_machine + local_rank
    if part_id % 2 == 0:
225
        dist_ten[pos * stride: (pos + 1) * stride] = F.ones(
226
227
            (stride, 2), dtype=F.int32, ctx=F.cpu()
        ) * (pos + 1)
228
229

    dgl.distributed.client_barrier()
230
    assert F.allclose(
231
        dist_ten[pos * stride: (pos + 1) * stride],
232
233
        F.ones((stride, 2), dtype=F.int32, ctx=F.cpu()) * (pos + 1),
    )
234

235
236

def dist_tensor_test_destroy_recreate(data_shape, name):
237
238
239
    dist_ten = dgl.distributed.DistTensor(
        data_shape, F.float32, name, init_func=zeros_init
    )
240
241
242
243
244
    del dist_ten

    dgl.distributed.client_barrier()

    new_shape = (data_shape[0], 4)
245
246
247
248
    dist_ten = dgl.distributed.DistTensor(
        new_shape, F.float32, name, init_func=zeros_init
    )

249
250

def dist_tensor_test_persistent(data_shape):
251
252
253
254
255
256
257
258
    dist_ten_name = "persistent_dist_tensor"
    dist_ten = dgl.distributed.DistTensor(
        data_shape,
        F.float32,
        dist_ten_name,
        init_func=zeros_init,
        persistent=True,
    )
259
260
    del dist_ten
    try:
261
262
263
264
        dist_ten = dgl.distributed.DistTensor(
            data_shape, F.float32, dist_ten_name
        )
        raise Exception("")
265
    except BaseException:
266
267
268
        pass


269
def test_dist_tensor(g):
270
271
    first_type = g.ntypes[0]
    data_shape = (g.number_of_nodes(first_type), 2)
272
273
    dist_tensor_test_sanity(data_shape)
    dist_tensor_test_sanity(data_shape, name="DistTensorSanity")
274
275
276
277
    dist_tensor_test_destroy_recreate(data_shape, name="DistTensorRecreate")
    dist_tensor_test_persistent(data_shape)


278
279
280
281
##########################################
############# DistEmbedding ##############
##########################################

282

283
def dist_embedding_check_sanity(num_nodes, optimizer, name=None):
284
    local_rank = dgl.distributed.get_rank() % num_client_per_machine
285

286
287
288
    emb = dgl.distributed.DistEmbedding(
        num_nodes, 1, name=name, init_func=zeros_init
    )
289
290
291
292
293
294
    lr = 0.001
    optim = optimizer(params=[emb], lr=lr)

    stride = 3

    pos = (part_id // 2) * num_client_per_machine + local_rank
295
    idx = F.arange(pos * stride, (pos + 1) * stride)
296
297
298
299
300
301
302
303
304
305
306
307
308

    if part_id % 2 == 0:
        with F.record_grad():
            value = emb(idx)
            optim.zero_grad()
            loss = F.sum(value + 1, 0)
        loss.backward()
        optim.step()

    dgl.distributed.client_barrier()
    value = emb(idx)
    F.allclose(value, F.ones((len(idx), 1), dtype=F.int32, ctx=F.cpu()) * -lr)

309
310
311
    not_update_idx = F.arange(
        ((num_part + 1) / 2) * num_client_per_machine * stride, num_nodes
    )
312
313
314
315
316
317
    value = emb(not_update_idx)
    assert np.all(F.asnumpy(value) == np.zeros((len(not_update_idx), 1)))


def dist_embedding_check_existing(num_nodes):
    dist_emb_name = "UniqueEmb"
318
319
320
    emb = dgl.distributed.DistEmbedding(
        num_nodes, 1, name=dist_emb_name, init_func=zeros_init
    )
321
    try:
322
323
324
325
        emb1 = dgl.distributed.DistEmbedding(
            num_nodes, 2, name=dist_emb_name, init_func=zeros_init
        )
        raise Exception("")
326
    except BaseException:
327
328
        pass

329

330
331
332
def test_dist_embedding(g):
    num_nodes = g.number_of_nodes(g.ntypes[0])
    dist_embedding_check_sanity(num_nodes, dgl.distributed.optim.SparseAdagrad)
333
334
335
336
337
338
    dist_embedding_check_sanity(
        num_nodes, dgl.distributed.optim.SparseAdagrad, name="SomeEmbedding"
    )
    dist_embedding_check_sanity(
        num_nodes, dgl.distributed.optim.SparseAdam, name="SomeEmbedding"
    )
339
340
341

    dist_embedding_check_existing(num_nodes)

342

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
##########################################
############# DistOptimizer ##############
##########################################


def dist_optimizer_check_store(g):
    num_nodes = g.number_of_nodes(g.ntypes[0])
    rank = g.rank()
    try:
        emb = dgl.distributed.DistEmbedding(
            num_nodes, 1, name="optimizer_test", init_func=zeros_init
        )
        emb2 = dgl.distributed.DistEmbedding(
            num_nodes, 5, name="optimizer_test2", init_func=zeros_init
        )
        emb_optimizer = dgl.distributed.optim.SparseAdam([emb, emb2], lr=0.1)
        if rank == 0:
            name_to_state = {}
            for _, emb_states in emb_optimizer._state.items():
                for state in emb_states:
                    name_to_state[state.name] = F.uniform(
                        state.shape, F.float32, F.cpu(), 0, 1
                    )
                    state[
                        F.arange(0, num_nodes, F.int64, F.cpu())
                    ] = name_to_state[state.name]
        emb_optimizer.save("emb.pt")
        new_emb_optimizer = dgl.distributed.optim.SparseAdam(
            [emb, emb2], lr=000.1, eps=2e-08, betas=(0.1, 0.222)
        )
        new_emb_optimizer.load("emb.pt")
        if rank == 0:
            for _, emb_states in new_emb_optimizer._state.items():
                for new_state in emb_states:
                    state = name_to_state[new_state.name]
                    new_state = new_state[
                        F.arange(0, num_nodes, F.int64, F.cpu())
                    ]
                    assert F.allclose (state, new_state, 0., 0.)
            assert new_emb_optimizer._lr == emb_optimizer._lr
            assert new_emb_optimizer._eps == emb_optimizer._eps
            assert new_emb_optimizer._beta1 == emb_optimizer._beta1
            assert new_emb_optimizer._beta2 == emb_optimizer._beta2
        g.barrier()
    finally:
        file = f'emb.pt_{rank}'
        if os.path.exists(file):
            os.remove(file)

def test_dist_optimizer(g):
    dist_optimizer_check_store(g)


396
if mode == "server":
397
398
399
400
401
402
403
404
405
406
    shared_mem = bool(int(os.environ.get("DIST_DGL_TEST_SHARED_MEM")))
    server_id = int(os.environ.get("DIST_DGL_TEST_SERVER_ID"))
    run_server(
        graph_name,
        server_id,
        server_count=num_servers_per_machine,
        num_clients=num_part * num_client_per_machine,
        shared_mem=shared_mem,
        keep_alive=False,
    )
407
elif mode == "client":
408
    os.environ["DGL_NUM_SERVER"] = str(num_servers_per_machine)
409
410
    dgl.distributed.initialize(ip_config, net_type=net_type)

411
412
413
    gpb, graph_name, _, _ = load_partition_book(
        graph_path + "/{}.json".format(graph_name), part_id, None
    )
414
    g = dgl.distributed.DistGraph(graph_name, gpb=gpb)
415

416
    target_func_map = {
417
418
        "DistGraph": test_dist_graph,
        "DistGraphServices": test_dist_graph_services,
419
420
        "DistTensor": test_dist_tensor,
        "DistEmbedding": test_dist_embedding,
421
        "DistOptimizer": test_dist_optimizer,
422
    }
423
424
425
426
427

    target = os.environ.get("DIST_DGL_TEST_OBJECT_TYPE", "")
    if target not in target_func_map:
        for test_func in target_func_map.values():
            test_func(g)
428
    else:
429
430
        target_func_map[target](g)

431
432
else:
    exit(1)