ndarray.cc 17.5 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
2
3
4
5
/*!
 *  Copyright (c) 2017 by Contributors
 * \file ndarray.cc
 * \brief NDArray container infratructure.
 */
6
#include <string.h>
Minjie Wang's avatar
Minjie Wang committed
7
8
9
10
#include <dmlc/logging.h>
#include <dgl/runtime/ndarray.h>
#include <dgl/runtime/c_runtime_api.h>
#include <dgl/runtime/device_api.h>
11
12
#include <dgl/runtime/shared_mem.h>
#include <dgl/zerocopy_serializer.h>
13
#include <dgl/runtime/tensordispatch.h>
Minjie Wang's avatar
Minjie Wang committed
14
15
16
17
18
#include "runtime_base.h"

// deleter for arrays used by DLPack exporter
extern "C" void NDArrayDLPackDeleter(DLManagedTensor* tensor);

19
namespace dgl {
20

21
22
constexpr DLDataType DLDataTypeTraits<int8_t>::dtype;
constexpr DLDataType DLDataTypeTraits<int16_t>::dtype;
23
24
25
26
27
28
29
constexpr DLDataType DLDataTypeTraits<int32_t>::dtype;
constexpr DLDataType DLDataTypeTraits<int64_t>::dtype;
constexpr DLDataType DLDataTypeTraits<uint32_t>::dtype;
constexpr DLDataType DLDataTypeTraits<uint64_t>::dtype;
constexpr DLDataType DLDataTypeTraits<float>::dtype;
constexpr DLDataType DLDataTypeTraits<double>::dtype;

Minjie Wang's avatar
Minjie Wang committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
namespace runtime {

inline void VerifyDataType(DLDataType dtype) {
  CHECK_GE(dtype.lanes, 1);
  if (dtype.code == kDLFloat) {
    CHECK_EQ(dtype.bits % 8, 0);
  } else {
    CHECK_EQ(dtype.bits % 8, 0);
  }
  CHECK_EQ(dtype.bits & (dtype.bits - 1), 0);
}

inline size_t GetDataSize(const DLTensor& arr) {
  size_t size = 1;
44
  for (dgl_index_t i = 0; i < arr.ndim; ++i) {
Minjie Wang's avatar
Minjie Wang committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    size *= arr.shape[i];
  }
  size *= (arr.dtype.bits * arr.dtype.lanes + 7) / 8;
  return size;
}

inline size_t GetDataAlignment(const DLTensor& arr) {
  size_t align = (arr.dtype.bits / 8) * arr.dtype.lanes;
  if (align < kAllocAlignment) return kAllocAlignment;
  return align;
}

struct NDArray::Internal {
  // Default deleter for the container
  static void DefaultDeleter(NDArray::Container* ptr) {
60
    using dgl::runtime::NDArray;
Minjie Wang's avatar
Minjie Wang committed
61
62
    if (ptr->manager_ctx != nullptr) {
      static_cast<NDArray::Container*>(ptr->manager_ctx)->DecRef();
63
64
    } else if (ptr->mem) {
      ptr->mem = nullptr;
Minjie Wang's avatar
Minjie Wang committed
65
    } else if (ptr->dl_tensor.data != nullptr) {
66
      // if the array is still pinned before freeing, unpin it.
67
      if (IsDataPinned(&(ptr->dl_tensor))) {
68
69
        UnpinData(&(ptr->dl_tensor));
      }
70
      dgl::runtime::DeviceAPI::Get(ptr->dl_tensor.ctx)->FreeDataSpace(
Minjie Wang's avatar
Minjie Wang committed
71
72
73
74
75
76
          ptr->dl_tensor.ctx, ptr->dl_tensor.data);
    }
    delete ptr;
  }
  // Deleter for NDArray converted from DLPack
  // This is used from data which is passed from external DLPack(DLManagedTensor)
77
  // that are not allocated inside of DGL.
Minjie Wang's avatar
Minjie Wang committed
78
79
80
  // This enables us to create NDArray from memory allocated by other
  // frameworks that are DLPack compatible
  static void DLPackDeleter(NDArray::Container* ptr) {
81
82
83
84
85
86
    if (ptr->from_tensor_dispatcher_) {
       if (IsDataPinned(&(ptr->dl_tensor))) {
        UnpinData(&(ptr->dl_tensor));
      }
    }

Minjie Wang's avatar
Minjie Wang committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    DLManagedTensor* tensor = static_cast<DLManagedTensor*>(ptr->manager_ctx);
    if (tensor->deleter != nullptr) {
      (*tensor->deleter)(tensor);
    }
    delete ptr;
  }
  // Local create function which allocates tensor metadata
  // but does not allocate space for the data.
  static NDArray Create(std::vector<int64_t> shape,
                        DLDataType dtype,
                        DLContext ctx) {
    VerifyDataType(dtype);
    // critical zone
    NDArray::Container* data = new NDArray::Container();
    data->deleter = DefaultDeleter;
    NDArray ret(data);
    ret.data_ = data;
    // RAII now in effect
    // setup shape
    data->shape_ = std::move(shape);
    data->dl_tensor.shape = dmlc::BeginPtr(data->shape_);
    data->dl_tensor.ndim = static_cast<int>(data->shape_.size());
109
110
111
112
113
114
115
    // setup stride (this should be optional, but some framework
    //   does not support NULL stride and thus will crash the program).
    data->stride_.resize(data->dl_tensor.ndim, 1);
    for (int i = data->dl_tensor.ndim - 2; i >= 0; --i) {
      data->stride_[i] = data->shape_[i+1] * data->stride_[i+1];
    }
    data->dl_tensor.strides = dmlc::BeginPtr(data->stride_);
Minjie Wang's avatar
Minjie Wang committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    // setup dtype
    data->dl_tensor.dtype = dtype;
    // setup ctx
    data->dl_tensor.ctx = ctx;
    return ret;
  }
  // Implementation of API function
  static DLTensor* MoveAsDLTensor(NDArray arr) {
    DLTensor* tensor = const_cast<DLTensor*>(arr.operator->());
    CHECK(reinterpret_cast<DLTensor*>(arr.data_) == tensor);
    arr.data_ = nullptr;
    return tensor;
  }
  // Container to DLManagedTensor
  static DLManagedTensor* ToDLPack(NDArray::Container* from) {
    CHECK(from != nullptr);
    DLManagedTensor* ret = new DLManagedTensor();
    ret->dl_tensor = from->dl_tensor;
    ret->manager_ctx = from;
    from->IncRef();
    ret->deleter = NDArrayDLPackDeleter;
    return ret;
  }
};

141
142
143
144
size_t NDArray::GetSize() const {
  return GetDataSize(data_->dl_tensor);
}

145
int64_t NDArray::NumElements() const {
146
147
  if (data_->dl_tensor.ndim == 0)
    return 0;
148
149
150
151
152
153
154
  int64_t size = 1;
  for (int i = 0; i < data_->dl_tensor.ndim; ++i) {
    size *= data_->dl_tensor.shape[i];
  }
  return size;
}

155
156
157
158
bool NDArray::IsContiguous() const {
  CHECK(data_ != nullptr);
  if (data_->dl_tensor.strides == nullptr)
    return true;
159
160
161
162
163
164
165
166
167
168

  // See https://github.com/dmlc/dgl/issues/2118 and PyTorch's compute_contiguous() implementation
  int64_t z = 1;
  for (int64_t i = data_->dl_tensor.ndim - 1; i >= 0; --i) {
    if (data_->dl_tensor.shape[i] != 1) {
      if (data_->dl_tensor.strides[i] == z)
        z *= data_->dl_tensor.shape[i];
      else
        return false;
    }
169
  }
170
  return true;
171
172
}

Minjie Wang's avatar
Minjie Wang committed
173
NDArray NDArray::CreateView(std::vector<int64_t> shape,
174
175
                            DLDataType dtype,
                            int64_t offset) {
Minjie Wang's avatar
Minjie Wang committed
176
  CHECK(data_ != nullptr);
177
  CHECK(IsContiguous()) << "Can only create view for compact tensor";
Minjie Wang's avatar
Minjie Wang committed
178
179
180
181
182
183
184
185
186
187
  NDArray ret = Internal::Create(shape, dtype, data_->dl_tensor.ctx);
  ret.data_->dl_tensor.byte_offset =
      this->data_->dl_tensor.byte_offset;
  size_t curr_size = GetDataSize(this->data_->dl_tensor);
  size_t view_size = GetDataSize(ret.data_->dl_tensor);
  CHECK_LE(view_size, curr_size)
      << "Tries to create a view that has bigger memory than current one";
  // increase ref count
  this->data_->IncRef();
  ret.data_->manager_ctx = this->data_;
188
189
  ret.data_->dl_tensor.data =
    static_cast<char*>(this->data_->dl_tensor.data) + offset;
Minjie Wang's avatar
Minjie Wang committed
190
191
192
193
194
195
196
  return ret;
}

DLManagedTensor* NDArray::ToDLPack() const {
  return Internal::ToDLPack(data_);
}

197
198
199
200
201
202
203
204
205
NDArray NDArray::EmptyShared(const std::string &name,
                       std::vector<int64_t> shape,
                       DLDataType dtype,
                       DLContext ctx, bool is_create) {
  NDArray ret = Internal::Create(shape, dtype, ctx);
  // setup memory content
  size_t size = GetDataSize(ret.data_->dl_tensor);
  auto mem = std::make_shared<SharedMemory>(name);
  if (is_create) {
206
    ret.data_->dl_tensor.data = mem->CreateNew(size);
207
  } else {
208
    ret.data_->dl_tensor.data = mem->Open(size);
209
210
211
212
213
214
  }

  ret.data_->mem = mem;
  return ret;
}

Minjie Wang's avatar
Minjie Wang committed
215
NDArray NDArray::Empty(std::vector<int64_t> shape,
216
217
                       DLDataType dtype,
                       DLContext ctx) {
218
  TensorDispatcher* td = TensorDispatcher::Global();
219
220
221
222
223
  if (td->IsAvailable()) {
    auto nd = td->Empty(shape, dtype, ctx);
    nd.data_->from_tensor_dispatcher_ = true;
    return nd;
  }
224

225
  NDArray ret = Internal::Create(shape, dtype, ctx);
Minjie Wang's avatar
Minjie Wang committed
226
227
228
  // setup memory content
  size_t size = GetDataSize(ret.data_->dl_tensor);
  size_t alignment = GetDataAlignment(ret.data_->dl_tensor);
229
230
231
232
  if (size > 0)
    ret.data_->dl_tensor.data =
        DeviceAPI::Get(ret->ctx)->AllocDataSpace(
            ret->ctx, size, alignment, ret->dtype);
Minjie Wang's avatar
Minjie Wang committed
233
234
235
236
237
238
239
240
  return ret;
}

NDArray NDArray::FromDLPack(DLManagedTensor* tensor) {
  NDArray::Container* data = new NDArray::Container();
  data->deleter = Internal::DLPackDeleter;
  data->manager_ctx = tensor;
  data->dl_tensor = tensor->dl_tensor;
241

Minjie Wang's avatar
Minjie Wang committed
242
243
244
245
246
  return NDArray(data);
}

void NDArray::CopyFromTo(DLTensor* from,
                         DLTensor* to,
247
                         DGLStreamHandle stream) {
Minjie Wang's avatar
Minjie Wang committed
248
249
250
  size_t from_size = GetDataSize(*from);
  size_t to_size = GetDataSize(*to);
  CHECK_EQ(from_size, to_size)
251
    << "DGLArrayCopyFromTo: The size must exactly match";
Minjie Wang's avatar
Minjie Wang committed
252
253
254
255
256
257
258
259

  CHECK(from->ctx.device_type == to->ctx.device_type
        || from->ctx.device_type == kDLCPU
        || to->ctx.device_type == kDLCPU)
    << "Can not copy across different ctx types directly";

  // Use the context that is *not* a cpu context to get the correct device
  // api manager.
260
  DGLContext ctx = from->ctx.device_type != kDLCPU ? from->ctx : to->ctx;
Minjie Wang's avatar
Minjie Wang committed
261
262
263
264
265
266
267

  DeviceAPI::Get(ctx)->CopyDataFromTo(
    from->data, static_cast<size_t>(from->byte_offset),
    to->data, static_cast<size_t>(to->byte_offset),
    from_size, from->ctx, to->ctx, from->dtype, stream);
}

268
void NDArray::PinData(DLTensor* tensor) {
269
  if (IsDataPinned(tensor)) return;
270
271
272
273
274
275
  CHECK_EQ(tensor->ctx.device_type, kDLCPU)
    << "Only NDArray on CPU can be pinned";
  DeviceAPI::Get(kDLGPU)->PinData(tensor->data, GetDataSize(*tensor));
}

void NDArray::UnpinData(DLTensor* tensor) {
276
  if (!IsDataPinned(tensor)) return;
277
278
279
  DeviceAPI::Get(kDLGPU)->UnpinData(tensor->data);
}

280
template<typename T>
281
282
NDArray NDArray::FromVector(const std::vector<T>& vec, DLContext ctx) {
  const DLDataType dtype = DLDataTypeTraits<T>::dtype;
283
  int64_t size = static_cast<int64_t>(vec.size());
284
  NDArray ret = NDArray::Empty({size}, dtype, ctx);
285
286
287
288
289
290
291
292
293
294
295
296
297
298
  DeviceAPI::Get(ctx)->CopyDataFromTo(
      vec.data(),
      0,
      static_cast<T*>(ret->data),
      0,
      size * sizeof(T),
      DLContext{kDLCPU, 0},
      ctx,
      dtype,
      nullptr);
  return ret;
}

// export specializations
299
300
301
302
303
304
template NDArray NDArray::FromVector<int32_t>(const std::vector<int32_t>&, DLContext);
template NDArray NDArray::FromVector<int64_t>(const std::vector<int64_t>&, DLContext);
template NDArray NDArray::FromVector<uint32_t>(const std::vector<uint32_t>&, DLContext);
template NDArray NDArray::FromVector<uint64_t>(const std::vector<uint64_t>&, DLContext);
template NDArray NDArray::FromVector<float>(const std::vector<float>&, DLContext);
template NDArray NDArray::FromVector<double>(const std::vector<double>&, DLContext);
305

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
template<typename T>
std::vector<T> NDArray::ToVector() const {
  const DLDataType dtype = DLDataTypeTraits<T>::dtype;
  CHECK(data_->dl_tensor.ndim == 1) << "ToVector() only supported for 1D arrays";
  CHECK(data_->dl_tensor.dtype == dtype) << "dtype mismatch";

  int64_t size = data_->dl_tensor.shape[0];
  std::vector<T> vec(size);
  const DLContext &ctx = data_->dl_tensor.ctx;
  DeviceAPI::Get(ctx)->CopyDataFromTo(
      static_cast<T*>(data_->dl_tensor.data),
      0,
      vec.data(),
      0,
      size * sizeof(T),
      ctx,
      DLContext{kDLCPU, 0},
      dtype,
      nullptr);
  return vec;
}

template std::vector<int32_t> NDArray::ToVector<int32_t>() const;
template std::vector<int64_t> NDArray::ToVector<int64_t>() const;
template std::vector<uint32_t> NDArray::ToVector<uint32_t>() const;
template std::vector<uint64_t> NDArray::ToVector<uint64_t>() const;
template std::vector<float> NDArray::ToVector<float>() const;
template std::vector<double> NDArray::ToVector<double>() const;
334

335
336
337
338
std::shared_ptr<SharedMemory> NDArray::GetSharedMem() const {
  return this->data_->mem;
}

339
340
341
342
343
344
345
346
bool NDArray::IsDataPinned(DLTensor* tensor) {
  // Can only be pinned if on CPU...
  if (tensor->ctx.device_type != kDLCPU)
    return false;
  // ... and CUDA device API is enabled, and the tensor is indeed in pinned memory.
  auto device = DeviceAPI::Get(kDLGPU, true);
  return device && device->IsPinned(tensor->data);
}
347
348

void NDArray::Save(dmlc::Stream* strm) const {
349
  auto zc_strm = dynamic_cast<StreamWithBuffer*>(strm);
350
351
352
353
354
355
356
357
  if (zc_strm) {
    zc_strm->PushNDArray(*this);
    return;
  }
  SaveDLTensor(strm, const_cast<DLTensor*>(operator->()));
}

bool NDArray::Load(dmlc::Stream* strm) {
358
  auto zc_strm = dynamic_cast<StreamWithBuffer*>(strm);
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
  if (zc_strm) {
    *this = zc_strm->PopNDArray();
    return true;
  }
  uint64_t header, reserved;
  CHECK(strm->Read(&header))
      << "Invalid DLTensor file format";
  CHECK(strm->Read(&reserved))
      << "Invalid DLTensor file format";
  CHECK(header == kDGLNDArrayMagic)
      << "Invalid DLTensor file format";
  DLContext ctx;
  int ndim;
  DLDataType dtype;
  CHECK(strm->Read(&ctx))
      << "Invalid DLTensor file format";
  CHECK(strm->Read(&ndim))
      << "Invalid DLTensor file format";
  CHECK(strm->Read(&dtype))
      << "Invalid DLTensor file format";
  CHECK_EQ(ctx.device_type, kDLCPU)
      << "Invalid DLTensor context: can only save as CPU tensor";
  std::vector<int64_t> shape(ndim);
  if (ndim != 0) {
    CHECK(strm->ReadArray(&shape[0], ndim))
        << "Invalid DLTensor file format";
  }
  NDArray ret = NDArray::Empty(shape, dtype, ctx);
  int64_t num_elems = 1;
  int elem_bytes = (ret->dtype.bits + 7) / 8;
  for (int i = 0; i < ret->ndim; ++i) {
    num_elems *= ret->shape[i];
  }
  int64_t data_byte_size;
  CHECK(strm->Read(&data_byte_size))
      << "Invalid DLTensor file format";
  CHECK(data_byte_size == num_elems * elem_bytes)
      << "Invalid DLTensor file format";
  if (data_byte_size != 0)  {
    // strm->Read will return the total number of elements successfully read.
    // Therefore if data_byte_size is zero, the CHECK below would fail.
    CHECK(strm->Read(ret->data, data_byte_size))
        << "Invalid DLTensor file format";
  }
  if (!DMLC_IO_NO_ENDIAN_SWAP) {
    dmlc::ByteSwap(ret->data, elem_bytes, num_elems);
  }
  *this = ret;
  return true;
}


Minjie Wang's avatar
Minjie Wang committed
411
}  // namespace runtime
412
}  // namespace dgl
Minjie Wang's avatar
Minjie Wang committed
413

414
using namespace dgl::runtime;
Minjie Wang's avatar
Minjie Wang committed
415
416
417
418
419
420

void NDArrayDLPackDeleter(DLManagedTensor* tensor) {
  static_cast<NDArray::Container*>(tensor->manager_ctx)->DecRef();
  delete tensor;
}

421
int DGLArrayAlloc(const dgl_index_t* shape,
Minjie Wang's avatar
Minjie Wang committed
422
423
424
425
426
427
                  int ndim,
                  int dtype_code,
                  int dtype_bits,
                  int dtype_lanes,
                  int device_type,
                  int device_id,
428
                  DGLArrayHandle* out) {
Minjie Wang's avatar
Minjie Wang committed
429
430
431
432
433
434
435
436
437
438
439
440
441
  API_BEGIN();
  DLDataType dtype;
  dtype.code = static_cast<uint8_t>(dtype_code);
  dtype.bits = static_cast<uint8_t>(dtype_bits);
  dtype.lanes = static_cast<uint16_t>(dtype_lanes);
  DLContext ctx;
  ctx.device_type = static_cast<DLDeviceType>(device_type);
  ctx.device_id = device_id;
  *out = NDArray::Internal::MoveAsDLTensor(
      NDArray::Empty(std::vector<int64_t>(shape, shape + ndim), dtype, ctx));
  API_END();
}

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
int DGLArrayAllocSharedMem(const char *mem_name,
                           const dgl_index_t *shape,
                           int ndim,
                           int dtype_code,
                           int dtype_bits,
                           int dtype_lanes,
                           bool is_create,
                           DGLArrayHandle* out) {
  API_BEGIN();
  DLDataType dtype;
  dtype.code = static_cast<uint8_t>(dtype_code);
  dtype.bits = static_cast<uint8_t>(dtype_bits);
  dtype.lanes = static_cast<uint16_t>(dtype_lanes);
  std::vector<int64_t> shape_vec(shape, shape + ndim);
  NDArray arr = NDArray::EmptyShared(mem_name, shape_vec, dtype,
                                     DLContext{kDLCPU, 0}, is_create);
  *out = NDArray::Internal::MoveAsDLTensor(arr);
  API_END();
}

462
int DGLArrayFree(DGLArrayHandle handle) {
Minjie Wang's avatar
Minjie Wang committed
463
464
465
466
467
  API_BEGIN();
  reinterpret_cast<NDArray::Container*>(handle)->DecRef();
  API_END();
}

468
469
470
int DGLArrayCopyFromTo(DGLArrayHandle from,
                       DGLArrayHandle to,
                       DGLStreamHandle stream) {
Minjie Wang's avatar
Minjie Wang committed
471
472
473
474
475
  API_BEGIN();
  NDArray::CopyFromTo(from, to, stream);
  API_END();
}

476
477
int DGLArrayFromDLPack(DLManagedTensor* from,
                       DGLArrayHandle* out) {
Minjie Wang's avatar
Minjie Wang committed
478
479
480
481
482
  API_BEGIN();
  *out = NDArray::Internal::MoveAsDLTensor(NDArray::FromDLPack(from));
  API_END();
}

483
484
485
486
487
488
489
inline bool is_aligned(const void* ptr, std::uintptr_t alignment) noexcept {
  auto iptr = reinterpret_cast<std::uintptr_t>(ptr);
  return !(iptr % alignment);
}

int DGLArrayToDLPack(DGLArrayHandle from, DLManagedTensor** out,
                     int alignment) {
Minjie Wang's avatar
Minjie Wang committed
490
  API_BEGIN();
491
492
  auto* nd_container = reinterpret_cast<NDArray::Container*>(from);
  DLTensor* nd = &(nd_container->dl_tensor);
493
  if (alignment != 0 && !is_aligned(nd->data, alignment)) {
494
    std::vector<int64_t> shape_vec(nd->shape, nd->shape + nd->ndim);
495
    NDArray copy_ndarray = NDArray::Empty(shape_vec, nd->dtype, nd->ctx);
496
497
498
499
500
    copy_ndarray.CopyFrom(nd);
    *out = copy_ndarray.ToDLPack();
  } else {
    *out = NDArray::Internal::ToDLPack(nd_container);
  }
Minjie Wang's avatar
Minjie Wang committed
501
502
503
  API_END();
}

504
void DGLDLManagedTensorCallDeleter(DLManagedTensor* dltensor) {
Minjie Wang's avatar
Minjie Wang committed
505
506
507
  (*(dltensor->deleter))(dltensor);
}

508
int DGLArrayCopyFromBytes(DGLArrayHandle handle,
Minjie Wang's avatar
Minjie Wang committed
509
510
511
                          void* data,
                          size_t nbytes) {
  API_BEGIN();
512
  DGLContext cpu_ctx;
Minjie Wang's avatar
Minjie Wang committed
513
514
515
516
  cpu_ctx.device_type = kDLCPU;
  cpu_ctx.device_id = 0;
  size_t arr_size = GetDataSize(*handle);
  CHECK_EQ(arr_size, nbytes)
517
      << "DGLArrayCopyFromBytes: size mismatch";
Minjie Wang's avatar
Minjie Wang committed
518
519
520
521
522
523
524
  DeviceAPI::Get(handle->ctx)->CopyDataFromTo(
      data, 0,
      handle->data, static_cast<size_t>(handle->byte_offset),
      nbytes, cpu_ctx, handle->ctx, handle->dtype, nullptr);
  API_END();
}

525
int DGLArrayCopyToBytes(DGLArrayHandle handle,
Minjie Wang's avatar
Minjie Wang committed
526
527
528
                        void* data,
                        size_t nbytes) {
  API_BEGIN();
529
  DGLContext cpu_ctx;
Minjie Wang's avatar
Minjie Wang committed
530
531
532
533
  cpu_ctx.device_type = kDLCPU;
  cpu_ctx.device_id = 0;
  size_t arr_size = GetDataSize(*handle);
  CHECK_EQ(arr_size, nbytes)
534
      << "DGLArrayCopyToBytes: size mismatch";
Minjie Wang's avatar
Minjie Wang committed
535
536
537
538
539
540
  DeviceAPI::Get(handle->ctx)->CopyDataFromTo(
      handle->data, static_cast<size_t>(handle->byte_offset),
      data, 0,
      nbytes, handle->ctx, cpu_ctx, handle->dtype, nullptr);
  API_END();
}
541
542
543
544

int DGLArrayPinData(DGLArrayHandle handle,
                    DLContext ctx) {
  API_BEGIN();
545
  NDArray::PinData(handle);
546
547
548
549
550
551
  API_END();
}

int DGLArrayUnpinData(DGLArrayHandle handle,
                      DLContext ctx) {
  API_BEGIN();
552
  NDArray::UnpinData(handle);
553
554
  API_END();
}