test_subg_inat.py 15.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import argparse, time, os, pickle
import random
import sys
sys.path.append("..")

from utils.deduce import get_edge_dist
import numpy as np
import shutil

import dgl
import torch
import torch.optim as optim

from models import LANDER
from dataset import LanderDataset
from utils import evaluation, decode, build_next_level, stop_iterating

from matplotlib import pyplot as plt
import seaborn

STATISTIC = False

###########
# ArgParser
parser = argparse.ArgumentParser()

# Dataset
parser.add_argument('--data_path', type=str, required=True)
parser.add_argument('--model_filename', type=str, default='lander.pth')
parser.add_argument('--faiss_gpu', action='store_true')
parser.add_argument('--num_workers', type=int, default=0)
parser.add_argument('--output_filename', type=str, default='data/features.pkl')

# HyperParam
parser.add_argument('--knn_k', type=int, default=10)
parser.add_argument('--levels', type=int, default=1)
parser.add_argument('--tau', type=float, default=0.5)
parser.add_argument('--threshold', type=str, default='prob')
parser.add_argument('--metrics', type=str, default='pairwise,bcubed,nmi')
parser.add_argument('--early_stop', action='store_true')

# Model
parser.add_argument('--hidden', type=int, default=512)
parser.add_argument('--num_conv', type=int, default=4)
parser.add_argument('--dropout', type=float, default=0.)
parser.add_argument('--gat', action='store_true')
parser.add_argument('--gat_k', type=int, default=1)
parser.add_argument('--balance', action='store_true')
parser.add_argument('--use_cluster_feat', action='store_true')
parser.add_argument('--use_focal_loss', action='store_true')
parser.add_argument('--use_gt', action='store_true')

# Subgraph
parser.add_argument('--batch_size', type=int, default=4096)
parser.add_argument('--mode', type=str, default="1head")
parser.add_argument('--midpoint', type=str, default="false")
parser.add_argument('--linsize', type=int, default=29011)
parser.add_argument('--uinsize', type=int, default=18403)
parser.add_argument('--inclasses', type=int, default=948)
parser.add_argument('--thresh', type=float, default=1.0)

parser.add_argument('--draw', type=str, default='false')
parser.add_argument('--density_distance_pkl', type=str, default="density_distance.pkl")
parser.add_argument('--density_lindistance_jpg', type=str, default="density_lindistance.jpg")

args = parser.parse_args()
print(args)
MODE = args.mode
linsize = args.linsize
uinsize = args.uinsize
inclasses = args.inclasses

if args.draw == 'false':
    args.draw = False
elif args.draw == 'true':
    args.draw = True

###########################
# Environment Configuration
if torch.cuda.is_available():
    device = torch.device('cuda')
else:
    device = torch.device('cpu')

##################
# Data Preparation
with open(args.data_path, 'rb') as f:
    loaded_data = pickle.load(f)
    path2idx, features, pred_labels, labels, masks = loaded_data

idx2path = {v: k for k, v in path2idx.items()}
gtlabels = labels

orifeatures = features
orilabels = gtlabels

if MODE == "selectbydensity":
    lastusim = np.where(masks == 1)
    masks[lastusim] = 2
    selectedidx = np.where(masks != 0)
    features = features[selectedidx]
    labels = gtlabels[selectedidx]
    selectmasks = masks[selectedidx]
    print("filtered features:", len(features))
    print("mask0:", len(np.where(masks == 0)[0]))
    print("mask1:", len(np.where(masks == 1)[0]))
    print("mask2:", len(np.where(masks == 2)[0]))
elif MODE == "recluster":
    selectedidx = np.where(masks == 1)
    features = features[selectedidx]
    labels = gtlabels[selectedidx]
    labelspred = pred_labels[selectedidx]
    selectmasks = masks[selectedidx]
    gtlabels = gtlabels[selectedidx]
    print("filtered features:", len(features))
else:
    selectedidx = np.where(masks != 0)
    features = features[selectedidx]
    labels = gtlabels[selectedidx]
    labelspred = pred_labels[selectedidx]
    selectmasks = masks[selectedidx]
    gtlabels = gtlabels[selectedidx]
    print("filtered features:", len(features))

global_features = features.copy()  # global features
dataset = LanderDataset(features=features, labels=labels, k=args.knn_k,
                        levels=1, faiss_gpu=False)
g = dataset.gs[0]
g.ndata['pred_den'] = torch.zeros((g.number_of_nodes()))
g.edata['prob_conn'] = torch.zeros((g.number_of_edges(), 2))
global_labels = labels.copy()
ids = np.arange(g.number_of_nodes())
global_edges = ([], [])
global_peaks = np.array([], dtype=np.long)
global_edges_len = len(global_edges[0])
global_num_nodes = g.number_of_nodes()

global_densities = g.ndata['density'][:linsize]
global_densities = np.sort(global_densities)
xs = np.arange(len(global_densities))

fanouts = [args.knn_k - 1 for i in range(args.num_conv + 1)]
sampler = dgl.dataloading.MultiLayerNeighborSampler(fanouts)
# fix the number of edges
145
test_loader = dgl.dataloading.DataLoader(
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    g, torch.arange(g.number_of_nodes()), sampler,
    batch_size=args.batch_size,
    shuffle=False,
    drop_last=False,
    num_workers=args.num_workers
)

##################
# Model Definition
if not args.use_gt:
    feature_dim = g.ndata['features'].shape[1]
    model = LANDER(feature_dim=feature_dim, nhid=args.hidden,
                   num_conv=args.num_conv, dropout=args.dropout,
                   use_GAT=args.gat, K=args.gat_k,
                   balance=args.balance,
                   use_cluster_feat=args.use_cluster_feat,
                   use_focal_loss=args.use_focal_loss)
    model.load_state_dict(torch.load(args.model_filename))
    model = model.to(device)
    model.eval()

# number of edges added is the indicator for early stopping
num_edges_add_last_level = np.Inf
##################################
# Predict connectivity and density
for level in range(args.levels):
    print("level:", level)
    if not args.use_gt:
        total_batches = len(test_loader)
        for batch, minibatch in enumerate(test_loader):
            input_nodes, sub_g, bipartites = minibatch
            sub_g = sub_g.to(device)
            bipartites = [b.to(device) for b in bipartites]
            with torch.no_grad():
                output_bipartite = model(bipartites)
            global_nid = output_bipartite.dstdata[dgl.NID]
            global_eid = output_bipartite.edata['global_eid']
            g.ndata['pred_den'][global_nid] = output_bipartite.dstdata['pred_den'].to('cpu')
            g.edata['prob_conn'][global_eid] = output_bipartite.edata['prob_conn'].to('cpu')
            torch.cuda.empty_cache()
            if (batch + 1) % 10 == 0:
                print('Batch %d / %d for inference' % (batch, total_batches))

    new_pred_labels, peaks, \
    global_edges, global_pred_labels, global_peaks = decode(g, args.tau, args.threshold, args.use_gt,
                                                            ids, global_edges, global_num_nodes,
                                                            global_peaks)
    if level == 0:
        global_pred_densities = g.ndata['pred_den']
        global_densities = g.ndata['density']
        g.edata['prob_conn'] = torch.zeros((g.number_of_edges(), 2))

    ids = ids[peaks]
    new_global_edges_len = len(global_edges[0])
    num_edges_add_this_level = new_global_edges_len - global_edges_len
    if stop_iterating(level, args.levels, args.early_stop, num_edges_add_this_level, num_edges_add_last_level,
                      args.knn_k):
        break
    global_edges_len = new_global_edges_len
    num_edges_add_last_level = num_edges_add_this_level

    # build new dataset
    features, labels, cluster_features = build_next_level(features, labels, peaks,
                                                          global_features, global_pred_labels, global_peaks)
    # After the first level, the number of nodes reduce a lot. Using cpu faiss is faster.
    dataset = LanderDataset(features=features, labels=labels, k=args.knn_k,
                            levels=1, faiss_gpu=False, cluster_features=cluster_features)
    g = dataset.gs[0]
    g.ndata['pred_den'] = torch.zeros((g.number_of_nodes()))
    g.edata['prob_conn'] = torch.zeros((g.number_of_edges(), 2))
216
    test_loader = dgl.dataloading.DataLoader(
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        g, torch.arange(g.number_of_nodes()), sampler,
        batch_size=args.batch_size,
        shuffle=False,
        drop_last=False,
        num_workers=args.num_workers
    )

if MODE == "selectbydensity":
    thresh = args.thresh
    global_pred_densities = np.array(global_pred_densities).astype(float)
    global_densities = np.array(global_densities).astype(float)
    distance = np.abs(global_pred_densities - global_densities)
    print("densities shape", global_pred_densities.shape)
    print(global_pred_densities.max(), global_pred_densities.min())

    selectidx = np.where(global_pred_densities > thresh)[0]
    selected_pred_densities = global_pred_densities[selectidx]
    selected_densities = global_densities[selectidx]
    selected_distance = np.abs(selected_pred_densities - selected_densities)
    print(np.mean(selected_distance))
    print("number of selected samples:", len(selectidx))

    notselectidx = np.where(global_pred_densities <= thresh)
    print("not selected:", len(notselectidx[0]))
    global_pred_labels[notselectidx] = -1

    global_pred_labels_new = np.zeros_like(orilabels)
    global_pred_labels_new[:] = -1
    Tidx = np.where(masks != 2)
    print("T:", len(Tidx[0]))

    l_in_gt = orilabels[Tidx]
    l_in_features = orifeatures[Tidx]
    l_in_gt_new = np.zeros_like(l_in_gt)
    l_in_unique = np.unique(l_in_gt)
    for i in range(len(l_in_unique)):
        l_in = l_in_unique[i]
        l_in_idx = np.where(l_in_gt == l_in)
        l_in_gt_new[l_in_idx] = i
    print("len(l_in_unique)", len(l_in_unique))

    if args.draw:
        prototypes = np.zeros((len(l_in_unique), features.shape[1]))
        for i in range(len(l_in_unique)):
            idx = np.where(l_in_gt_new == i)
            prototypes[i] = np.mean(l_in_features[idx], axis=0)

        similarity_matrix = torch.mm(torch.from_numpy(global_features.astype(np.float32)),
                                     torch.from_numpy(prototypes.astype(np.float32)).t())
        similarity_matrix = (1 - similarity_matrix) / 2
        minvalues, selected_pred_labels = torch.min(similarity_matrix, 1)
        # far-close ratio
        closeidx = np.where(minvalues < 0.15)
        faridx = np.where(minvalues >= 0.15)
        print("far:", len(faridx[0]))
        print("close:", len(closeidx[0]))

        cutidx = np.where(global_pred_densities >= 0.5)
        draw_minvalues = minvalues[cutidx]
        draw_densities = global_pred_densities[cutidx]
        with open(args.density_distance_pkl, 'wb') as f:
            pickle.dump((global_pred_densities, minvalues), f)
        print("dumped.")
        plt.clf()
        fig, ax = plt.subplots()
        import random

        if len(draw_densities) > 10000:
            samples_idx = random.sample(range(len(draw_minvalues)), 10000)
            ax.plot(draw_densities[random], draw_minvalues[random], color='tab:blue', marker='*', linestyle="None",
                    markersize=1)
        else:
            ax.plot(draw_densities[random], draw_minvalues[random], color='tab:blue', marker='*', linestyle="None",
                    markersize=1)
        plt.savefig(args.density_lindistance_jpg)

    global_pred_labels_new[Tidx] = l_in_gt_new
    global_pred_labels[selectidx] = global_pred_labels[selectidx] + len(l_in_unique)
    global_pred_labels_new[selectedidx] = global_pred_labels

    global_pred_labels = global_pred_labels_new
    linunique = np.unique(global_pred_labels[Tidx])
    uunique = np.unique(global_pred_labels[selectedidx])
    allnique = np.unique(global_pred_labels)
    print("labels")
    print(len(linunique), len(uunique), len(allnique))

    global_masks = np.zeros_like(masks)
    global_masks[:] = 1
    global_masks[np.array(selectedidx[0])[notselectidx]] = 2
    Tidx = np.where(masks != 2)
    global_masks[Tidx] = 0
    print("mask0", len(np.where(global_masks == 0)[0]))
    print("mask1", len(np.where(global_masks == 1)[0]))
    print("mask2", len(np.where(global_masks == 2)[0]))
    print("all", len(masks), len(orilabels), len(orifeatures))

    global_gt_labels = orilabels

if MODE == "recluster":
    global_pred_labels_new = np.zeros_like(orilabels)
    global_pred_labels_new[:] = -1
    Tidx = np.where(masks == 0)
    print("T:", len(Tidx[0]))

    l_in_gt = orilabels[Tidx]
    l_in_features = orifeatures[Tidx]
    l_in_gt_new = np.zeros_like(l_in_gt)
    l_in_unique = np.unique(l_in_gt)
    for i in range(len(l_in_unique)):
        l_in = l_in_unique[i]
        l_in_idx = np.where(l_in_gt == l_in)
        l_in_gt_new[l_in_idx] = i
    print("len(l_in_unique)", len(l_in_unique))

    global_pred_labels_new[Tidx] = l_in_gt_new
    print(len(global_pred_labels))
    print(len(selectedidx[0]))
    global_pred_labels_new[selectedidx[0]] = global_pred_labels + len(l_in_unique)
    global_pred_labels = global_pred_labels_new
    global_masks = masks
    print("mask0", len(np.where(global_masks == 0)[0]))
    print("mask1", len(np.where(global_masks == 1)[0]))
    print("mask2", len(np.where(global_masks == 2)[0]))
    print("all", len(masks), len(orilabels), len(orifeatures))
    global_gt_labels = orilabels

if MODE == "donothing":
    global_masks = masks
    pass

print("##################### L_in ########################")
print(linsize)
if len(global_pred_labels) >= linsize:
    evaluation(global_pred_labels[:linsize], global_gt_labels[:linsize], args.metrics)
else:
    print("No samples in L_in!")
print("##################### U_in ########################")
uinidx = np.where(global_pred_labels[linsize:linsize + uinsize] != -1)[0]
uinidx = uinidx + linsize
print(len(uinidx))
if len(uinidx):
    evaluation(global_pred_labels[uinidx], global_gt_labels[uinidx], args.metrics)
else:
    print("No samples in U_in!")
print("##################### U_out ########################")
uoutidx = np.where(global_pred_labels[linsize + uinsize:] != -1)[0]
uoutidx = uoutidx + linsize + uinsize
print(len(uoutidx))
if len(uoutidx):
    evaluation(global_pred_labels[uoutidx], global_gt_labels[uoutidx], args.metrics)
else:
    print("No samples in U_out!")
print("##################### U ########################")
uidx = np.where(global_pred_labels[linsize:] != -1)[0]
uidx = uidx + linsize
print(len(uidx))
if len(uidx):
    evaluation(global_pred_labels[uidx], global_gt_labels[uidx], args.metrics)
else:
    print("No samples in U!")
print("##################### L+U ########################")
luidx = np.where(global_pred_labels != -1)[0]
print(len(luidx))
evaluation(global_pred_labels[luidx], global_gt_labels[luidx], args.metrics)
print("##################### new selected samples ########################")
sidx = np.where(global_masks == 1)[0]
print(len(sidx))
if len(sidx) != 0:
    evaluation(global_pred_labels[sidx], global_gt_labels[sidx], args.metrics)
print("##################### not selected samples ########################")
nsidx = np.where(global_masks == 2)[0]
print(len(nsidx))
if len(nsidx) != 0:
    evaluation(global_pred_labels[nsidx], global_gt_labels[nsidx], args.metrics)

with open(args.output_filename, 'wb') as f:
    print(orifeatures.shape)
    print(global_pred_labels.shape)
    print(global_gt_labels.shape)
    print(global_masks.shape)
    pickle.dump([path2idx, orifeatures, global_pred_labels, global_gt_labels, global_masks], f)