libxsmm_sync.c 20.8 KB
Newer Older
lisj's avatar
lisj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
/******************************************************************************
* Copyright (c) Intel Corporation - All rights reserved.                      *
* This file is part of the LIBXSMM library.                                   *
*                                                                             *
* For information on the license, see the LICENSE file.                       *
* Further information: https://github.com/hfp/libxsmm/                        *
* SPDX-License-Identifier: BSD-3-Clause                                       *
******************************************************************************/
/*  Hans Pabst, Alexander Heinecke (Intel Corp.)
******************************************************************************/
/* Lock primitives inspired by Karl Malbrain, Concurrency Kit, and TF/sync.
******************************************************************************/
#include "libxsmm_main.h"

#if !defined(LIBXSMM_SYNC_FUTEX) && defined(__linux__) && defined(__USE_GNU)
# define LIBXSMM_SYNC_FUTEX
#endif

#if defined(LIBXSMM_OFFLOAD_TARGET)
# pragma offload_attribute(push,target(LIBXSMM_OFFLOAD_TARGET))
#endif
#include <stdint.h>
#if defined(_WIN32)
# include <process.h>
#else
# if defined(LIBXSMM_SYNC_FUTEX) && defined(__linux__) && defined(__USE_GNU)
#   include <linux/futex.h>
# endif
# include <unistd.h>
# include <time.h>
#endif
#if defined(LIBXSMM_OFFLOAD_TARGET)
# pragma offload_attribute(pop)
#endif

#if !defined(LIBXSMM_SYNC_RWLOCK_BITS)
# if defined(__MINGW32__)
#   define LIBXSMM_SYNC_RWLOCK_BITS 32
# else
#   define LIBXSMM_SYNC_RWLOCK_BITS 16
# endif
#endif

#if !defined(LIBXSMM_SYNC_GENERIC_PID) && 1
# define LIBXSMM_SYNC_GENERIC_PID
#endif


LIBXSMM_EXTERN_C typedef struct LIBXSMM_RETARGETABLE internal_sync_core_tag { /* per-core */
  uint8_t id;
  volatile uint8_t core_sense;
  volatile uint8_t* thread_senses;
  volatile uint8_t* my_flags[2];
  uint8_t** partner_flags[2];
  uint8_t parity;
  uint8_t sense;
} internal_sync_core_tag;

LIBXSMM_EXTERN_C typedef struct LIBXSMM_RETARGETABLE internal_sync_thread_tag { /* per-thread */
  int core_tid;
  internal_sync_core_tag *core;
} internal_sync_thread_tag;

struct LIBXSMM_RETARGETABLE libxsmm_barrier {
  internal_sync_core_tag** cores;
  internal_sync_thread_tag** threads;
  int ncores, nthreads_per_core;
  int nthreads, ncores_nbits; /* nbits(ncores) != log2(ncores) */
  /* internal counter type which is guaranteed to be atomic when using certain methods */
  volatile int threads_waiting;
  /* thread-safety during initialization */
  volatile uint8_t init_done;
};


LIBXSMM_API libxsmm_barrier* libxsmm_barrier_create(int ncores, int nthreads_per_core)
{
  libxsmm_barrier *const barrier = (libxsmm_barrier*)malloc(sizeof(libxsmm_barrier));
#if (0 == LIBXSMM_SYNC)
  LIBXSMM_UNUSED(ncores); LIBXSMM_UNUSED(nthreads_per_core);
#else
  if (NULL != barrier && 1 < ncores && 1 <= nthreads_per_core) {
    barrier->ncores = ncores;
    barrier->ncores_nbits = (int)LIBXSMM_NBITS(ncores);
    barrier->nthreads_per_core = nthreads_per_core;
    barrier->nthreads = ncores * nthreads_per_core;
    barrier->threads = (internal_sync_thread_tag**)libxsmm_aligned_malloc(
      barrier->nthreads * sizeof(internal_sync_thread_tag*), LIBXSMM_CACHELINE);
    barrier->cores = (internal_sync_core_tag**)libxsmm_aligned_malloc(
      barrier->ncores * sizeof(internal_sync_core_tag*), LIBXSMM_CACHELINE);
    barrier->threads_waiting = barrier->nthreads; /* atomic */
    barrier->init_done = 0; /* false */
  }
  else
#endif
  if (NULL != barrier) {
    barrier->nthreads = 1;
  }
  return barrier;
}


LIBXSMM_API void libxsmm_barrier_init(libxsmm_barrier* barrier, int tid)
{
#if (0 == LIBXSMM_SYNC)
  LIBXSMM_UNUSED(barrier); LIBXSMM_UNUSED(tid);
#else
  if (NULL != barrier && 1 < barrier->nthreads) {
    const int cid = tid / barrier->nthreads_per_core; /* this thread's core ID */
    internal_sync_core_tag* core = 0;
    int i;
    internal_sync_thread_tag* thread;

    /* we only initialize the barrier once */
    if (barrier->init_done == 2) {
      return;
    }

    /* allocate per-thread structure */
    thread = (internal_sync_thread_tag*)libxsmm_aligned_malloc(
      sizeof(internal_sync_thread_tag), LIBXSMM_CACHELINE);
    barrier->threads[tid] = thread;
    thread->core_tid = tid - (barrier->nthreads_per_core * cid); /* mod */

    /* each core's thread 0 does all the allocations */
    if (0 == thread->core_tid) {
      core = (internal_sync_core_tag*)libxsmm_aligned_malloc(
        sizeof(internal_sync_core_tag), LIBXSMM_CACHELINE);
      core->id = (uint8_t)cid;
      core->core_sense = 1;

      core->thread_senses = (uint8_t*)libxsmm_aligned_malloc(
        barrier->nthreads_per_core * sizeof(uint8_t), LIBXSMM_CACHELINE);
      for (i = 0; i < barrier->nthreads_per_core; ++i) core->thread_senses[i] = 1;

      for (i = 0; i < 2; ++i) {
        core->my_flags[i] = (uint8_t*)libxsmm_aligned_malloc(
          barrier->ncores_nbits * sizeof(uint8_t) * LIBXSMM_CACHELINE,
          LIBXSMM_CACHELINE);
        core->partner_flags[i] = (uint8_t**)libxsmm_aligned_malloc(
          barrier->ncores_nbits * sizeof(uint8_t*),
          LIBXSMM_CACHELINE);
      }

      core->parity = 0;
      core->sense = 1;
      barrier->cores[cid] = core;
    }

    /* barrier to let all the allocations complete */
    if (0 == LIBXSMM_ATOMIC_SUB_FETCH(&barrier->threads_waiting, 1, LIBXSMM_ATOMIC_RELAXED)) {
      barrier->threads_waiting = barrier->nthreads; /* atomic */
      barrier->init_done = 1; /* true */
    }
    else {
      while (0/*false*/ == barrier->init_done);
    }

    /* set required per-thread information */
    thread->core = barrier->cores[cid];

    /* each core's thread 0 completes setup */
    if (0 == thread->core_tid) {
      int di;
      for (i = di = 0; i < barrier->ncores_nbits; ++i, di += LIBXSMM_CACHELINE) {
        /* find dissemination partner and link to it */
        const int dissem_cid = (cid + (1 << i)) % barrier->ncores;
        assert(0 != core); /* initialized under the same condition; see above */
        core->my_flags[0][di] = core->my_flags[1][di] = 0;
        core->partner_flags[0][i] = (uint8_t*)&barrier->cores[dissem_cid]->my_flags[0][di];
        core->partner_flags[1][i] = (uint8_t*)&barrier->cores[dissem_cid]->my_flags[1][di];
      }
    }

    /* barrier to let initialization complete */
    if (0 == LIBXSMM_ATOMIC_SUB_FETCH(&barrier->threads_waiting, 1, LIBXSMM_ATOMIC_RELAXED)) {
      barrier->threads_waiting = barrier->nthreads; /* atomic */
      barrier->init_done = 2;
    }
    else {
      while (2 != barrier->init_done);
    }
  }
#endif
}


LIBXSMM_API LIBXSMM_INTRINSICS(LIBXSMM_X86_GENERIC)
void libxsmm_barrier_wait(libxsmm_barrier* barrier, int tid)
{
#if (0 == LIBXSMM_SYNC)
  LIBXSMM_UNUSED(barrier); LIBXSMM_UNUSED(tid);
#else
  if (NULL != barrier && 1 < barrier->nthreads) {
    internal_sync_thread_tag *const thread = barrier->threads[tid];
    internal_sync_core_tag *const core = thread->core;

    /* first let's execute a memory fence */
    LIBXSMM_ATOMIC_SYNC(LIBXSMM_ATOMIC_SEQ_CST);

    /* first signal this thread's arrival */
    core->thread_senses[thread->core_tid] = (uint8_t)(0 == core->thread_senses[thread->core_tid] ? 1 : 0);

    /* each core's thread 0 syncs across cores */
    if (0 == thread->core_tid) {
      int i;
      /* wait for the core's remaining threads */
      for (i = 1; i < barrier->nthreads_per_core; ++i) {
        uint8_t core_sense = core->core_sense, thread_sense = core->thread_senses[i];
        while (core_sense == thread_sense) { /* avoid evaluation in unspecified order */
          LIBXSMM_SYNC_PAUSE;
          core_sense = core->core_sense;
          thread_sense = core->thread_senses[i];
        }
      }

      if (1 < barrier->ncores) {
        int di;
# if defined(__MIC__)
        /* cannot use LIBXSMM_ALIGNED since attribute may not apply to local non-static arrays */
        uint8_t sendbuffer[LIBXSMM_CACHELINE+LIBXSMM_CACHELINE-1];
        uint8_t *const sendbuf = LIBXSMM_ALIGN(sendbuffer, LIBXSMM_CACHELINE);
        __m512d m512d;
        _mm_prefetch((const char*)core->partner_flags[core->parity][0], _MM_HINT_ET1);
        sendbuf[0] = core->sense;
        m512d = LIBXSMM_INTRINSICS_MM512_LOAD_PD(sendbuf);
# endif

        for (i = di = 0; i < barrier->ncores_nbits - 1; ++i, di += LIBXSMM_CACHELINE) {
# if defined(__MIC__)
          _mm_prefetch((const char*)core->partner_flags[core->parity][i+1], _MM_HINT_ET1);
          _mm512_storenrngo_pd(core->partner_flags[core->parity][i], m512d);
# else
          *core->partner_flags[core->parity][i] = core->sense;
# endif
          while (core->my_flags[core->parity][di] != core->sense) LIBXSMM_SYNC_PAUSE;
        }

# if defined(__MIC__)
        _mm512_storenrngo_pd(core->partner_flags[core->parity][i], m512d);
# else
        *core->partner_flags[core->parity][i] = core->sense;
# endif
        while (core->my_flags[core->parity][di] != core->sense) LIBXSMM_SYNC_PAUSE;
        if (1 == core->parity) {
          core->sense = (uint8_t)(0 == core->sense ? 1 : 0);
        }
        core->parity = (uint8_t)(1 - core->parity);
      }

      /* wake up the core's remaining threads */
      core->core_sense = core->thread_senses[0];
    }
    else { /* other threads wait for cross-core sync to complete */
      uint8_t core_sense = core->core_sense, thread_sense = core->thread_senses[thread->core_tid];
      while (core_sense != thread_sense) { /* avoid evaluation in unspecified order */
        LIBXSMM_SYNC_PAUSE;
        core_sense = core->core_sense;
        thread_sense = core->thread_senses[thread->core_tid];
      }
    }
  }
#endif
}


LIBXSMM_API void libxsmm_barrier_destroy(const libxsmm_barrier* barrier)
{
#if (0 != LIBXSMM_SYNC)
  if (NULL != barrier && 1 < barrier->nthreads) {
    if (2 == barrier->init_done) {
      int i;
      for (i = 0; i < barrier->ncores; ++i) {
        int j;
        libxsmm_free((const void*)barrier->cores[i]->thread_senses);
        for (j = 0; j < 2; ++j) {
          libxsmm_free((const void*)barrier->cores[i]->my_flags[j]);
          libxsmm_free(barrier->cores[i]->partner_flags[j]);
        }
        libxsmm_free(barrier->cores[i]);
      }
      for (i = 0; i < barrier->nthreads; ++i) {
        libxsmm_free(barrier->threads[i]);
      }
    }
    libxsmm_free(barrier->threads);
    libxsmm_free(barrier->cores);
  }
#endif
  free((libxsmm_barrier*)barrier);
}


#if (0 != LIBXSMM_SYNC)
enum {
  INTERNAL_SYNC_LOCK_FREE = 0,
  INTERNAL_SYNC_LOCK_LOCKED = 1,
  INTERNAL_SYNC_LOCK_CONTESTED = 2,
  INTERNAL_SYNC_RWLOCK_READINC = 0x10000/*(USHRT_MAX+1)*/,
  INTERNAL_SYNC_FUTEX = 202
};
#endif


typedef unsigned int libxsmm_spinlock_state;
struct LIBXSMM_RETARGETABLE libxsmm_spinlock {
  volatile libxsmm_spinlock_state state;
};


LIBXSMM_API libxsmm_spinlock* libxsmm_spinlock_create(void)
{
  libxsmm_spinlock *const result = (libxsmm_spinlock*)malloc(sizeof(libxsmm_spinlock));
#if (0 != LIBXSMM_SYNC)
  if (0 != result) {
    result->state = INTERNAL_SYNC_LOCK_FREE;
  }
#endif
  return result;
}


LIBXSMM_API void libxsmm_spinlock_destroy(const libxsmm_spinlock* spinlock)
{
  free((libxsmm_spinlock*)spinlock);
}


LIBXSMM_API int libxsmm_spinlock_trylock(libxsmm_spinlock* spinlock)
{
#if (0 != LIBXSMM_SYNC)
# if 0
  /*const*/ libxsmm_spinlock_state lock_free = INTERNAL_SYNC_LOCK_FREE;
  assert(0 != spinlock);
  return 0/*false*/ == LIBXSMM_ATOMIC_CMPSWP(&spinlock->state, lock_free, INTERNAL_SYNC_LOCK_LOCKED, LIBXSMM_ATOMIC_RELAXED)
    ? (LIBXSMM_LOCK_ACQUIRED(LIBXSMM_LOCK_SPINLOCK) + 1) /* not acquired */
    : (LIBXSMM_LOCK_ACQUIRED(LIBXSMM_LOCK_SPINLOCK));
# else
  return LIBXSMM_LOCK_ACQUIRED(LIBXSMM_LOCK_SPINLOCK) + !LIBXSMM_ATOMIC_TRYLOCK(&spinlock->state, LIBXSMM_ATOMIC_RELAXED);
# endif
#else
  LIBXSMM_UNUSED(spinlock);
  return LIBXSMM_LOCK_ACQUIRED(LIBXSMM_LOCK_SPINLOCK);
#endif
}


LIBXSMM_API void libxsmm_spinlock_acquire(libxsmm_spinlock* spinlock)
{
#if (0 != LIBXSMM_SYNC)
  assert(0 != spinlock);
  for (;;) {
    if (1 == LIBXSMM_ATOMIC_ADD_FETCH(&spinlock->state, 1, LIBXSMM_ATOMIC_RELAXED)) break;
    LIBXSMM_SYNC_CYCLE(&spinlock->state, INTERNAL_SYNC_LOCK_FREE, LIBXSMM_SYNC_NPAUSE);
  }
  LIBXSMM_ATOMIC_SYNC(LIBXSMM_ATOMIC_SEQ_CST);
#else
  LIBXSMM_UNUSED(spinlock);
#endif
}


LIBXSMM_API void libxsmm_spinlock_release(libxsmm_spinlock* spinlock)
{
#if (0 != LIBXSMM_SYNC)
  assert(0 != spinlock);
  LIBXSMM_ATOMIC_SYNC(LIBXSMM_ATOMIC_SEQ_CST);
  spinlock->state = INTERNAL_SYNC_LOCK_FREE;
#else
  LIBXSMM_UNUSED(spinlock);
#endif
}


#if defined(LIBXSMM_SYNC_FUTEX) && defined(__linux__) && defined(__USE_GNU)
typedef int libxsmm_mutex_state;
#else
typedef char libxsmm_mutex_state;
#endif
struct LIBXSMM_RETARGETABLE libxsmm_mutex {
  volatile libxsmm_mutex_state state;
};


LIBXSMM_API libxsmm_mutex* libxsmm_mutex_create(void)
{
  libxsmm_mutex *const result = (libxsmm_mutex*)malloc(sizeof(libxsmm_mutex));
#if (0 != LIBXSMM_SYNC)
  if (0 != result) {
    result->state = INTERNAL_SYNC_LOCK_FREE;
  }
#endif
  return result;
}


LIBXSMM_API void libxsmm_mutex_destroy(const libxsmm_mutex* mutex)
{
  free((libxsmm_mutex*)mutex);
}


LIBXSMM_API int libxsmm_mutex_trylock(libxsmm_mutex* mutex)
{
#if (0 != LIBXSMM_SYNC)
  assert(0 != mutex);
  return LIBXSMM_LOCK_ACQUIRED(LIBXSMM_LOCK_MUTEX) + !LIBXSMM_ATOMIC_TRYLOCK(&mutex->state, LIBXSMM_ATOMIC_RELAXED);
#else
  LIBXSMM_UNUSED(mutex);
  return LIBXSMM_LOCK_ACQUIRED(LIBXSMM_LOCK_MUTEX);
#endif
}


LIBXSMM_API void libxsmm_mutex_acquire(libxsmm_mutex* mutex)
{
#if (0 != LIBXSMM_SYNC)
# if defined(_WIN32)
  assert(0 != mutex);
  while (LIBXSMM_LOCK_ACQUIRED(LIBXSMM_LOCK_MUTEX) != libxsmm_mutex_trylock(mutex)) {
    LIBXSMM_SYNC_CYCLE(&mutex->state, 0/*free*/, LIBXSMM_SYNC_NPAUSE);
  }
# else
  libxsmm_mutex_state lock_free = INTERNAL_SYNC_LOCK_FREE, lock_state = INTERNAL_SYNC_LOCK_LOCKED;
  assert(0 != mutex);
  while (0/*false*/ == LIBXSMM_ATOMIC_CMPSWP(&mutex->state, lock_free, lock_state, LIBXSMM_ATOMIC_RELAXED)) {
    libxsmm_mutex_state state;
    /* coverity[unreachable] may be reachable more than once due to volatile state */
    for (state = mutex->state; INTERNAL_SYNC_LOCK_FREE != state; state = mutex->state) {
#     if defined(LIBXSMM_SYNC_FUTEX) && defined(__linux__)
      LIBXSMM_SYNC_CYCLE_ELSE(&mutex->state, INTERNAL_SYNC_LOCK_FREE, LIBXSMM_SYNC_NPAUSE, {
        /*const*/ libxsmm_mutex_state state_locked = INTERNAL_SYNC_LOCK_LOCKED;
        if (INTERNAL_SYNC_LOCK_LOCKED != state || LIBXSMM_ATOMIC_CMPSWP(&mutex->state,
          state_locked, INTERNAL_SYNC_LOCK_CONTESTED, LIBXSMM_ATOMIC_RELAXED))
        {
          syscall(INTERNAL_SYNC_FUTEX, &mutex->state, FUTEX_WAIT, INTERNAL_SYNC_LOCK_CONTESTED, NULL, NULL, 0);
          lock_state = INTERNAL_SYNC_LOCK_CONTESTED;
        }}
      );
      break;
#     else
      LIBXSMM_SYNC_CYCLE(&mutex->state, INTERNAL_SYNC_LOCK_FREE, LIBXSMM_SYNC_NPAUSE);
#     endif
    }
    lock_free = INTERNAL_SYNC_LOCK_FREE;
  }
# endif
#else
  LIBXSMM_UNUSED(mutex);
#endif
}


LIBXSMM_API void libxsmm_mutex_release(libxsmm_mutex* mutex)
{
#if (0 != LIBXSMM_SYNC)
  assert(0 != mutex);
  LIBXSMM_ATOMIC_SYNC(LIBXSMM_ATOMIC_SEQ_CST);
# if defined(LIBXSMM_SYNC_FUTEX) && defined(__linux__) && defined(__USE_GNU)
  if (INTERNAL_SYNC_LOCK_CONTESTED == LIBXSMM_ATOMIC_FETCH_SUB(&mutex->state, 1, LIBXSMM_ATOMIC_RELAXED)) {
    mutex->state = INTERNAL_SYNC_LOCK_FREE;
    syscall(INTERNAL_SYNC_FUTEX, &mutex->state, FUTEX_WAKE, 1, NULL, NULL, 0);
  }
# else
  mutex->state = INTERNAL_SYNC_LOCK_FREE;
# endif
#else
  LIBXSMM_UNUSED(mutex);
#endif
}


#if (0 != LIBXSMM_SYNC)
typedef LIBXSMM_CONCATENATE3(uint,LIBXSMM_SYNC_RWLOCK_BITS,_t) internal_sync_uint_t;
typedef LIBXSMM_CONCATENATE3(int,LIBXSMM_SYNC_RWLOCK_BITS,_t) internal_sync_int_t;
LIBXSMM_EXTERN_C typedef union LIBXSMM_RETARGETABLE internal_sync_counter {
  struct { internal_sync_uint_t writer, reader; } kind;
  uint32_t bits;
} internal_sync_counter;
#endif
LIBXSMM_EXTERN_C struct LIBXSMM_RETARGETABLE libxsmm_rwlock {
#if (0 != LIBXSMM_SYNC)
  volatile internal_sync_counter completions;
  volatile internal_sync_counter requests;
#else
  int dummy;
#endif
};


LIBXSMM_API libxsmm_rwlock* libxsmm_rwlock_create(void)
{
  libxsmm_rwlock *const result = (libxsmm_rwlock*)malloc(sizeof(libxsmm_rwlock));
  if (0 != result) {
#if (0 != LIBXSMM_SYNC)
    LIBXSMM_MEMZERO127(&result->completions);
    LIBXSMM_MEMZERO127(&result->requests);
#else
    LIBXSMM_MEMZERO127(result);
#endif
  }
  return result;
}


LIBXSMM_API void libxsmm_rwlock_destroy(const libxsmm_rwlock* rwlock)
{
  free((libxsmm_rwlock*)rwlock);
}


#if (0 != LIBXSMM_SYNC)
LIBXSMM_API_INLINE int internal_rwlock_trylock(libxsmm_rwlock* rwlock, internal_sync_counter* prev)
{
  internal_sync_counter next;
  assert(0 != rwlock && 0 != prev);
  do {
    prev->bits = rwlock->requests.bits;
    next.bits = prev->bits;
    ++next.kind.writer;
  }
  while (0/*false*/ == LIBXSMM_ATOMIC_CMPSWP(&rwlock->requests.bits, prev->bits, next.bits, LIBXSMM_ATOMIC_RELAXED));
  return rwlock->completions.bits != prev->bits
    ? (LIBXSMM_LOCK_ACQUIRED(LIBXSMM_LOCK_RWLOCK) + 1) /* not acquired */
    : (LIBXSMM_LOCK_ACQUIRED(LIBXSMM_LOCK_RWLOCK));
}
#endif


LIBXSMM_API int libxsmm_rwlock_trylock(libxsmm_rwlock* rwlock)
{
#if (0 != LIBXSMM_SYNC)
  internal_sync_counter prev;
  return internal_rwlock_trylock(rwlock, &prev);
#else
  LIBXSMM_UNUSED(rwlock);
  return LIBXSMM_LOCK_ACQUIRED(LIBXSMM_LOCK_RWLOCK);
#endif
}


LIBXSMM_API void libxsmm_rwlock_acquire(libxsmm_rwlock* rwlock)
{
#if (0 != LIBXSMM_SYNC)
  internal_sync_counter prev;
  if (LIBXSMM_LOCK_ACQUIRED(LIBXSMM_LOCK_RWLOCK) != internal_rwlock_trylock(rwlock, &prev)) {
    while (rwlock->completions.bits != prev.bits) {
      LIBXSMM_SYNC_CYCLE(&rwlock->completions.bits, prev.bits, LIBXSMM_SYNC_NPAUSE);
    }
  }
#else
  LIBXSMM_UNUSED(rwlock);
#endif
}


LIBXSMM_API void libxsmm_rwlock_release(libxsmm_rwlock* rwlock)
{
#if (0 != LIBXSMM_SYNC)
  assert(0 != rwlock);
  LIBXSMM_ATOMIC(LIBXSMM_ATOMIC_FETCH_ADD, LIBXSMM_SYNC_RWLOCK_BITS)(&rwlock->completions.kind.writer, 1, LIBXSMM_ATOMIC_SEQ_CST);
#else
  LIBXSMM_UNUSED(rwlock);
#endif
}


#if (0 != LIBXSMM_SYNC)
LIBXSMM_API_INLINE int internal_rwlock_tryread(libxsmm_rwlock* rwlock, internal_sync_counter* prev)
{
#if (0 != LIBXSMM_SYNC)
  assert(0 != rwlock && 0 != prev);
  prev->bits = LIBXSMM_ATOMIC_FETCH_ADD(&rwlock->requests.bits, INTERNAL_SYNC_RWLOCK_READINC, LIBXSMM_ATOMIC_SEQ_CST);
  return rwlock->completions.kind.writer != prev->kind.writer
    ? (LIBXSMM_LOCK_ACQUIRED(LIBXSMM_LOCK_RWLOCK) + 1) /* not acquired */
    : (LIBXSMM_LOCK_ACQUIRED(LIBXSMM_LOCK_RWLOCK));
#else
  LIBXSMM_UNUSED(rwlock); LIBXSMM_UNUSED(prev);
  return LIBXSMM_LOCK_ACQUIRED(LIBXSMM_LOCK_RWLOCK);
#endif
}
#endif


LIBXSMM_API int libxsmm_rwlock_tryread(libxsmm_rwlock* rwlock)
{
#if (0 != LIBXSMM_SYNC)
  internal_sync_counter prev;
  return internal_rwlock_tryread(rwlock, &prev);
#else
  LIBXSMM_UNUSED(rwlock);
  return LIBXSMM_LOCK_ACQUIRED(LIBXSMM_LOCK_RWLOCK);
#endif
}


LIBXSMM_API void libxsmm_rwlock_acqread(libxsmm_rwlock* rwlock)
{
#if (0 != LIBXSMM_SYNC)
  internal_sync_counter prev;
  if (LIBXSMM_LOCK_ACQUIRED(LIBXSMM_LOCK_RWLOCK) != internal_rwlock_tryread(rwlock, &prev)) {
    while (rwlock->completions.kind.writer != prev.kind.writer) {
      LIBXSMM_SYNC_CYCLE(&rwlock->completions.kind.writer, prev.kind.writer, LIBXSMM_SYNC_NPAUSE);
    }
  }
#else
  LIBXSMM_UNUSED(rwlock);
#endif
}


LIBXSMM_API void libxsmm_rwlock_relread(libxsmm_rwlock* rwlock)
{
#if (0 != LIBXSMM_SYNC)
  assert(0 != rwlock);
  LIBXSMM_ATOMIC(LIBXSMM_ATOMIC_FETCH_ADD, LIBXSMM_SYNC_RWLOCK_BITS)(&rwlock->completions.kind.reader, 1, LIBXSMM_ATOMIC_SEQ_CST);
#else
  LIBXSMM_UNUSED(rwlock);
#endif
}


LIBXSMM_API unsigned int libxsmm_get_pid(void)
{
#if defined(_WIN32)
  return (unsigned int)_getpid();
#else
  return (unsigned int)getpid();
#endif
}


LIBXSMM_API_INTERN unsigned int internal_get_tid(void);
LIBXSMM_API_INTERN unsigned int internal_get_tid(void)
{
  const unsigned int nthreads = LIBXSMM_ATOMIC_ADD_FETCH(&libxsmm_thread_count, 1, LIBXSMM_ATOMIC_RELAXED);
#if !defined(NDEBUG)
  static int error_once = 0;
  if (LIBXSMM_NTHREADS_MAX < nthreads
    && 0 != libxsmm_verbosity /* library code is expected to be mute */
    && 1 == LIBXSMM_ATOMIC_ADD_FETCH(&error_once, 1, LIBXSMM_ATOMIC_RELAXED))
  {
    fprintf(stderr, "LIBXSMM ERROR: maximum number of threads is exhausted!\n");
  }
#endif
  LIBXSMM_ASSERT(LIBXSMM_ISPOT(LIBXSMM_NTHREADS_MAX));
  return LIBXSMM_MOD2(nthreads - 1, LIBXSMM_NTHREADS_MAX);
}


LIBXSMM_API unsigned int libxsmm_get_tid(void)
{
#if (0 != LIBXSMM_SYNC)
# if defined(LIBXSMM_SYNC_GENERIC_PID)
  static LIBXSMM_TLS unsigned int tid = 0xFFFFFFFF;
  if (0xFFFFFFFF == tid) tid = internal_get_tid();
  return tid;
# else
  void* tls = LIBXSMM_TLS_GETVALUE(libxsmm_tlskey);
  if (NULL == tls) {
    static unsigned int tid[LIBXSMM_NTHREADS_MAX];
    const int i = internal_get_tid();
    tid[i] = i; tls = tid + i;
    /* coverity[check_return] */
    LIBXSMM_TLS_SETVALUE(libxsmm_tlskey, tls);
  }
  return *(unsigned int*)tls;
# endif
#else
  return 0;
#endif
}