model.py 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
import dgl
from dgl.graph import DGLGraph
from dgl.nn import GCN
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import argparse
9
from util import DataLoader, elapsed, generate_dataset
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import time

class MLP(nn.Module):
    def __init__(self, num_hidden, num_classes, num_layers):
        super(MLP, self).__init__()
        layers = []
        # hidden layers
        for _ in range(num_layers):
            layers.append(nn.Linear(num_hidden, num_hidden))
            layers.append(nn.Sigmoid())
        # output projection
        layers.append(nn.Linear(num_hidden, num_classes))
        self.layers = nn.Sequential(*layers)

    def forward(self, x):
        return self.layers(x)


def move2cuda(x):
    # recursively move a object to cuda
    if isinstance(x, torch.Tensor):
        # if Tensor, move directly
        return x.cuda()
    else:
        try:
            # iterable, recursively move each element
            x = [move2cuda(i) for i in x]
            return x
        except:
            # don't do anything for other types like basic types
            return x


class DGMG(nn.Module):
    def __init__(self, node_num_hidden, graph_num_hidden, T, num_MLP_layers=1, loss_func=None, dropout=0.0, use_cuda=False):
        super(DGMG, self).__init__()
        # hidden size of node and graph
        self.node_num_hidden = node_num_hidden
        self.graph_num_hidden = graph_num_hidden
        # use GCN as a simple propagation model
        self.gcn = nn.ModuleList([GCN(node_num_hidden, node_num_hidden, F.relu, dropout) for _ in range(T)])
        # project node repr to graph repr (higher dimension)
        self.graph_project = nn.Linear(node_num_hidden, graph_num_hidden)
        # add node
        self.fan = MLP(graph_num_hidden, 2, num_MLP_layers)
        # add edge
        self.fae = MLP(graph_num_hidden + node_num_hidden, 1, num_MLP_layers)
        # select node to add edge
        self.fs = MLP(node_num_hidden * 2, 1, num_MLP_layers)
        # init node state
        self.finit = MLP(graph_num_hidden, node_num_hidden, num_MLP_layers)
        # loss function
        self.loss_func = loss_func
        # use gpu
        self.use_cuda = use_cuda

    def decide_add_node(self, hGs):
        h = self.fan(hGs)
        p = F.softmax(h, dim=1)
        # calc loss
        self.loss += self.loss_func(p, self.labels[self.step], self.masks[self.step])

    def decide_add_edge(self, batched_graph, hGs):
        hvs = batched_graph.get_n_repr((self.sample_node_curr_idx - 1).tolist())['h']
        h = self.fae(torch.cat((hGs, hvs), dim=1))
        p = torch.sigmoid(h)
        p = torch.cat([1 - p, p], dim=1)
        self.loss += self.loss_func(p, self.labels[self.step], self.masks[self.step])

    def select_node_to_add_edge(self, batched_graph, indices):
        node_indices = self.sample_node_curr_idx[indices].tolist()
        node_start = self.sample_node_start_idx[indices].tolist()
        node_repr = batched_graph.get_n_repr()['h']
        for i, j, idx in zip(node_start, node_indices, indices):
            hu = node_repr.narrow(0, i, j-i)
            hv = node_repr.narrow(0, j-1, 1)
            huv = torch.cat((hu, hv.expand(j-i, -1)), dim=1)
            s = F.softmax(self.fs(huv), dim=0).view(1, -1)
            dst = self.node_select[self.step][idx].view(-1)
            self.loss += self.loss_func(s, dst)

    def update_graph_repr(self, batched_graph, hGs, indices, indices_tensor):
        start = self.sample_node_start_idx[indices].tolist()
        stop = self.sample_node_curr_idx[indices].tolist()
        node_repr = batched_graph.get_n_repr()['h']
        graph_repr = self.graph_project(node_repr)
        new_hGs = []
        for i, j in zip(start, stop):
            h = graph_repr.narrow(0, i, j-i)
            hG = torch.sum(h, 0, keepdim=True)
            new_hGs.append(hG)
        new_hGs = torch.cat(new_hGs, dim=0)
        return hGs.index_copy(0, indices_tensor, new_hGs)

    def propagate(self, batched_graph, indices):
        edge_src = [self.sample_edge_src[idx][0: self.sample_edge_count[idx]] for idx in indices]
        edge_dst = [self.sample_edge_dst[idx][0: self.sample_edge_count[idx]] for idx in indices]
        u = np.concatenate(edge_src).tolist()
        v = np.concatenate(edge_dst).tolist()
        for gcn in self.gcn:
            gcn.forward(batched_graph, u, v, attribute='h')

    def forward(self, training=False, ground_truth=None):
        if not training:
            raise NotImplementedError("inference is not implemented yet")

        assert(ground_truth is not None)
        signals, (batched_graph, self.sample_edge_src, self.sample_edge_dst) = ground_truth
        nsteps, self.labels, self.node_select, self.masks, active_step, label1_set, label1_set_tensor = signals
        # init loss
        self.loss = 0

        batch_size = len(self.sample_edge_src)
        # initial node repr for each sample
        hVs = torch.zeros(len(batched_graph), self.node_num_hidden)
        # FIXME: what's the initial grpah repr for empty graph?
        hGs = torch.zeros(batch_size, self.graph_num_hidden)

        if self.use_cuda:
            hVs = hVs.cuda()
            hGs = hGs.cuda()
        batched_graph.set_n_repr({'h': hVs})

        self.sample_node_start_idx = batched_graph.query_node_start_offset()
        self.sample_node_curr_idx = self.sample_node_start_idx.copy()
        self.sample_edge_count = np.zeros(batch_size, dtype=int)

        self.step = 0
        while self.step < nsteps:
            if self.step % 2 == 0: # add node step
                if active_step[self.step]:
                    # decide whether to add node
                    self.decide_add_node(hGs)

                    # calculate initial state for new node
                    hvs = self.finit(hGs)

                    # add node
                    update = label1_set[self.step]
                    if len(update) > 0:
                        hvs = torch.index_select(hvs, 0, label1_set_tensor[self.step])
                        scatter_indices = self.sample_node_curr_idx[update]
                        batched_graph.set_n_repr({'h': hvs}, scatter_indices.tolist())
                        self.sample_node_curr_idx[update] += 1

                        # get new graph repr
                        hGs = self.update_graph_repr(batched_graph, hGs, update, label1_set_tensor[self.step])
                else:
                    # all samples are masked
                    pass

            else: # add edge step

                # decide whether to add edge, which edge to add
                # and also add edge
                self.decide_add_edge(batched_graph, hGs)

                # propagate
                to_add_edge = label1_set[self.step]
                if len(to_add_edge) > 0:
                    # at least one graph needs update
                    self.select_node_to_add_edge(batched_graph, to_add_edge)
                    # update edge count for each sample
                    self.sample_edge_count[to_add_edge] += 2 # undirected graph

                    # perform gcn propagation
                    self.propagate(batched_graph, to_add_edge)

                    # get new graph repr
                    hGs = self.update_graph_repr(batched_graph, hGs, label1_set[self.step], label1_set_tensor[self.step])

            self.step += 1


def main(args):

    if torch.cuda.is_available() and args.gpu >= 0:
        torch.cuda.set_device(args.gpu)
        use_cuda = True
    else:
        use_cuda = False


    def masked_cross_entropy(x, label, mask=None):
        # x: propability tensor, i.e. after softmax
        x = torch.log(x)
        if mask is not None:
            x = x[mask]
            label = label[mask]
        return F.nll_loss(x, label)

    model = DGMG(args.n_hidden_node, args.n_hidden_graph, args.n_layers,
                 loss_func=masked_cross_entropy, dropout=args.dropout, use_cuda=use_cuda)
    if use_cuda:
        model.cuda()

    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    # training loop
    for ep in range(args.n_epochs):
        print("epoch: {}".format(ep))
        for idx, ground_truth in enumerate(DataLoader(args.dataset, args.batch_size)):
            if use_cuda:
                count, label, node_list, mask, active, label1, label1_tensor = ground_truth[0]
                label, node_list, mask, label1_tensor = move2cuda((label, node_list, mask, label1_tensor))
                ground_truth[0] = (count, label, node_list, mask, active, label1, label1_tensor)

            optimizer.zero_grad()
            # create new empty graphs
            start = time.time()
            model.forward(True, ground_truth)
            end = time.time()
            elapsed("model forward", start, end)
            start = time.time()
            model.loss.backward()
            optimizer.step()
            end = time.time()
            elapsed("model backward", start, end)
            print("iter {}: loss {}".format(idx, model.loss.item()))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='DGMG')
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=20,
            help="number of training epochs")
    parser.add_argument("--n-hidden-node", type=int, default=16,
            help="number of hidden DGMG node units")
    parser.add_argument("--n-hidden-graph", type=int, default=32,
            help="number of hidden DGMG graph units")
    parser.add_argument("--n-layers", type=int, default=2,
            help="number of hidden gcn layers")
    parser.add_argument("--dataset", type=str, default='samples.p',
            help="dataset pickle file")
249
250
    parser.add_argument("--gen-dataset", type=str, default=None,
            help="parameters to generate B-A graph datasets. Format: <#node>,<#edge>,<#sample>")
251
252
253
254
255
    parser.add_argument("--batch-size", type=int, default=32,
            help="batch size")
    args = parser.parse_args()
    print(args)

256
257
258
259
260
    # generate dataset if needed
    if args.gen_dataset is not None:
        n_node, n_edge, n_sample = map(int, args.gen_dataset.split(','))
        generate_dataset(n_node, n_edge, n_sample, args.dataset)

261
    main(args)