movielens.py 7.97 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import pandas as pd
import dgl
import os
import torch
import numpy as np
import scipy.sparse as sp
import time
from functools import partial
from .. import randomwalk
import stanfordnlp
import re
import tqdm
import string

class MovieLens(object):
    def __init__(self, directory):
        '''
        directory: path to movielens directory which should have the three
                   files:
                   users.dat
                   movies.dat
                   ratings.dat
        '''
        self.directory = directory

        users = []
        movies = []
        ratings = []

        # read users
        with open(os.path.join(directory, 'users.dat')) as f:
            for l in f:
                id_, gender, age, occupation, zip_ = l.strip().split('::')
                users.append({
                    'id': int(id_),
                    'gender': gender,
                    'age': age,
                    'occupation': occupation,
                    'zip': zip_,
                    })
        self.users = pd.DataFrame(users).set_index('id').astype('category')

        # read movies
        with open(os.path.join(directory, 'movies.dat'), encoding='latin1') as f:
            for l in f:
                id_, title, genres = l.strip().split('::')
                genres_set = set(genres.split('|'))

                # extract year
                assert re.match(r'.*\([0-9]{4}\)$', title)
                year = title[-5:-1]
                title = title[:-6].strip()

                data = {'id': int(id_), 'title': title, 'year': year}
                for g in genres_set:
                    data[g] = True
                movies.append(data)
        self.movies = (
                pd.DataFrame(movies)
                .set_index('id')
                .fillna(False)
                .astype({'year': 'category'}))
        self.genres = self.movies.columns[self.movies.dtypes == bool]

        # read ratings
        with open(os.path.join(directory, 'ratings.dat')) as f:
            for l in f:
                user_id, movie_id, rating, timestamp = [int(_) for _ in l.split('::')]
                ratings.append({
                    'user_id': user_id,
                    'movie_id': movie_id,
                    'rating': rating,
                    'timestamp': timestamp,
                    })
        ratings = pd.DataFrame(ratings)
        movie_count = ratings['movie_id'].value_counts()
        movie_count.name = 'movie_count'
        ratings = ratings.join(movie_count, on='movie_id')
        self.ratings = ratings

        # drop users and movies which do not exist in ratings
        self.users = self.users[self.users.index.isin(self.ratings['user_id'])]
        self.movies = self.movies[self.movies.index.isin(self.ratings['movie_id'])]

        self.data_split()
        self.build_graph()

    def split_user(self, df, filter_counts=False):
        df_new = df.copy()
        df_new['prob'] = 0

        if filter_counts:
            df_new_sub = (df_new['movie_count'] >= 10).nonzero()[0]
        else:
            df_new_sub = df_new['train'].nonzero()[0]
        prob = np.linspace(0, 1, df_new_sub.shape[0], endpoint=False)
        np.random.shuffle(prob)
        df_new['prob'].iloc[df_new_sub] = prob
        return df_new

    def data_split(self):
        self.ratings = self.ratings.groupby('user_id', group_keys=False).apply(
                partial(self.split_user, filter_counts=True))
        self.ratings['train'] = self.ratings['prob'] <= 0.8
        self.ratings['valid'] = (self.ratings['prob'] > 0.8) & (self.ratings['prob'] <= 0.9)
        self.ratings['test'] = self.ratings['prob'] > 0.9
        self.ratings.drop(['prob'], axis=1, inplace=True)

    def build_graph(self):
        user_ids = list(self.users.index)
        movie_ids = list(self.movies.index)
        user_ids_invmap = {id_: i for i, id_ in enumerate(user_ids)}
        movie_ids_invmap = {id_: i for i, id_ in enumerate(movie_ids)}
        self.user_ids = user_ids
        self.movie_ids = movie_ids
        self.user_ids_invmap = user_ids_invmap
        self.movie_ids_invmap = movie_ids_invmap

        g = dgl.DGLGraph()
        g.add_nodes(len(user_ids) + len(movie_ids))

        # user features
        for user_column in self.users.columns:
            udata = torch.zeros(g.number_of_nodes(), dtype=torch.int64)
            # 0 for padding
            udata[:len(user_ids)] = \
                    torch.LongTensor(self.users[user_column].cat.codes.values.astype('int64') + 1)
            g.ndata[user_column] = udata

        # movie genre
        movie_genres = torch.from_numpy(self.movies[self.genres].values.astype('float32'))
        g.ndata['genre'] = torch.zeros(g.number_of_nodes(), len(self.genres))
        g.ndata['genre'][len(user_ids):len(user_ids) + len(movie_ids)] = movie_genres

        # movie year
        g.ndata['year'] = torch.zeros(g.number_of_nodes(), dtype=torch.int64)
        # 0 for padding
        g.ndata['year'][len(user_ids):len(user_ids) + len(movie_ids)] = \
                torch.LongTensor(self.movies['year'].cat.codes.values.astype('int64') + 1)

        # movie title
        nlp = stanfordnlp.Pipeline(use_gpu=False, processors='tokenize,lemma')
        vocab = set()
        title_words = []
        for t in tqdm.tqdm(self.movies['title'].values):
            doc = nlp(t)
            words = set()
            for s in doc.sentences:
                words.update(w.lemma.lower() for w in s.words
                             if not re.fullmatch(r'['+string.punctuation+']+', w.lemma))
            vocab.update(words)
            title_words.append(words)
        vocab = list(vocab)
        vocab_invmap = {w: i for i, w in enumerate(vocab)}
        # bag-of-words
        g.ndata['title'] = torch.zeros(g.number_of_nodes(), len(vocab))
        for i, tw in enumerate(tqdm.tqdm(title_words)):
158
            g.ndata['title'][len(user_ids) + i, [vocab_invmap[w] for w in tw]] = 1
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        self.vocab = vocab
        self.vocab_invmap = vocab_invmap

        rating_user_vertices = [user_ids_invmap[id_] for id_ in self.ratings['user_id'].values]
        rating_movie_vertices = [movie_ids_invmap[id_] + len(user_ids)
                                 for id_ in self.ratings['movie_id'].values]
        self.rating_user_vertices = rating_user_vertices
        self.rating_movie_vertices = rating_movie_vertices

        g.add_edges(
                rating_user_vertices,
                rating_movie_vertices,
                data={'inv': torch.zeros(self.ratings.shape[0], dtype=torch.uint8)})
        g.add_edges(
                rating_movie_vertices,
                rating_user_vertices,
                data={'inv': torch.ones(self.ratings.shape[0], dtype=torch.uint8)})
        self.g = g

    def generate_mask(self):
        while True:
            ratings = self.ratings.groupby('user_id', group_keys=False).apply(self.split_user)
            prior_prob = ratings['prob'].values
            for i in range(5):
                train_mask = (prior_prob >= 0.2 * i) & (prior_prob < 0.2 * (i + 1))
                prior_mask = ~train_mask
                train_mask &= ratings['train'].values
                prior_mask &= ratings['train'].values
                yield prior_mask, train_mask

    def refresh_mask(self):
        if not hasattr(self, 'masks'):
            self.masks = self.generate_mask()
        prior_mask, train_mask = next(self.masks)

        valid_tensor = torch.from_numpy(self.ratings['valid'].values.astype('uint8'))
        test_tensor = torch.from_numpy(self.ratings['test'].values.astype('uint8'))
        train_tensor = torch.from_numpy(train_mask.astype('uint8'))
        prior_tensor = torch.from_numpy(prior_mask.astype('uint8'))
        edge_data = {
                'prior': prior_tensor,
                'valid': valid_tensor,
                'test': test_tensor,
                'train': train_tensor,
                }

        self.g.edges[self.rating_user_vertices, self.rating_movie_vertices].data.update(edge_data)
        self.g.edges[self.rating_movie_vertices, self.rating_user_vertices].data.update(edge_data)