test_graph_index.py 4.11 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import os
os.environ['DGLBACKEND'] = 'mxnet'
import mxnet as mx
import numpy as np
import scipy as sp
from dgl.graph import GraphIndex, create_graph_index
from dgl.graph_index import map_to_subgraph_nid
from dgl import utils

def generate_rand_graph(n):
    arr = (sp.sparse.random(n, n, density=0.1, format='coo') != 0).astype(np.int64)
    g = create_graph_index(arr)
    ig = create_graph_index(arr, readonly=True)
    return g, ig

def check_graph_equal(g1, g2):
17
18
    adj1 = g1.adjacency_matrix().get(mx.cpu()) != 0
    adj2 = g2.adjacency_matrix().get(mx.cpu()) != 0
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    assert mx.nd.sum(adj1 - adj2).asnumpy() == 0

def test_graph_gen():
    g, ig = generate_rand_graph(10)
    check_graph_equal(g, ig)

def check_basics(g, ig):
    assert g.number_of_nodes() == ig.number_of_nodes()
    assert g.number_of_edges() == ig.number_of_edges()

    edges = g.edges()
    iedges = ig.edges()

    for i in range(g.number_of_nodes()):
        assert g.has_node(i) == ig.has_node(i)

    for i in range(g.number_of_nodes()):
        assert mx.nd.sum(g.predecessors(i).tousertensor()).asnumpy() == mx.nd.sum(ig.predecessors(i).tousertensor()).asnumpy()
        assert mx.nd.sum(g.successors(i).tousertensor()).asnumpy() == mx.nd.sum(ig.successors(i).tousertensor()).asnumpy()

    randv = np.random.randint(0, g.number_of_nodes(), 10)
    randv = utils.toindex(randv)
    in_src1, in_dst1, in_eids1 = g.in_edges(randv)
    in_src2, in_dst2, in_eids2 = ig.in_edges(randv)
    nnz = in_src2.tousertensor().shape[0]
    assert mx.nd.sum(in_src1.tousertensor() == in_src2.tousertensor()).asnumpy() == nnz
    assert mx.nd.sum(in_dst1.tousertensor() == in_dst2.tousertensor()).asnumpy() == nnz
    assert mx.nd.sum(in_eids1.tousertensor() == in_eids2.tousertensor()).asnumpy() == nnz

    out_src1, out_dst1, out_eids1 = g.out_edges(randv)
    out_src2, out_dst2, out_eids2 = ig.out_edges(randv)
    nnz = out_dst2.tousertensor().shape[0]
    assert mx.nd.sum(out_dst1.tousertensor() == out_dst2.tousertensor()).asnumpy() == nnz
    assert mx.nd.sum(out_src1.tousertensor() == out_src2.tousertensor()).asnumpy() == nnz
    assert mx.nd.sum(out_eids1.tousertensor() == out_eids2.tousertensor()).asnumpy() == nnz

    num_v = len(randv)
    assert mx.nd.sum(g.in_degrees(randv).tousertensor() == ig.in_degrees(randv).tousertensor()).asnumpy() == num_v
    assert mx.nd.sum(g.out_degrees(randv).tousertensor() == ig.out_degrees(randv).tousertensor()).asnumpy() == num_v
    randv = randv.tousertensor()
    for v in randv.asnumpy():
        assert g.in_degree(v) == ig.in_degree(v)
        assert g.out_degree(v) == ig.out_degree(v)

    for u in randv.asnumpy():
        for v in randv.asnumpy():
            if len(g.edge_id(u, v).tolist()) == 1:
                assert g.edge_id(u, v).tolist() == ig.edge_id(u, v).tolist()
            assert g.has_edge_between(u, v) == ig.has_edge_between(u, v)
    randv = utils.toindex(randv)
    ids = g.edge_ids(randv, randv)[2].tolist()
70
    assert sum(ig.edge_ids(randv, randv)[2].tolist() == ids) == len(ids)
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    assert sum(g.has_edges_between(randv, randv).tolist() == ig.has_edges_between(randv, randv).tolist()) == len(randv)


def test_basics():
    g, ig = generate_rand_graph(100)
    check_basics(g, ig)

def test_node_subgraph():
    num_vertices = 100
    g, ig = generate_rand_graph(num_vertices)

    # node_subgraph
    randv1 = np.random.randint(0, num_vertices, 20)
    randv = np.unique(randv1)
    subg = g.node_subgraph(utils.toindex(randv))
    subig = ig.node_subgraph(utils.toindex(randv))
    check_graph_equal(subg, subig)
    assert mx.nd.sum(map_to_subgraph_nid(subg, utils.toindex(randv1[0:10])).tousertensor()
            == map_to_subgraph_nid(subig, utils.toindex(randv1[0:10])).tousertensor()) == 10

    # node_subgraphs
    randvs = []
    subgs = []
    for i in range(4):
        randv = np.unique(np.random.randint(0, num_vertices, 20))
        randvs.append(utils.toindex(randv))
        subgs.append(g.node_subgraph(utils.toindex(randv)))
    subigs= ig.node_subgraphs(randvs)
    for i in range(4):
        check_graph_equal(subgs[i], subigs[i])


if __name__ == '__main__':
    test_basics()
    test_graph_gen()
    test_node_subgraph()