main_sample.py 5.15 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import argparse
import numpy as np
import torch as th
import torch.nn as nn
import random
import dgl
import warnings

warnings.filterwarnings('ignore')

from dataset import process_dataset, process_dataset_appnp
from model import MVGRL, LogReg

parser = argparse.ArgumentParser(description='mvgrl')

parser.add_argument('--dataname', type=str, default='cora', help='Name of dataset.')
parser.add_argument('--gpu', type=int, default=-1, help='GPU index. Default: -1, using cpu.')
parser.add_argument('--epochs', type=int, default=500, help='Training epochs.')
parser.add_argument('--patience', type=int, default=20, help='Patient epochs to wait before early stopping.')
parser.add_argument('--lr1', type=float, default=0.001, help='Learning rate of mvgrl.')
parser.add_argument('--lr2', type=float, default=0.01, help='Learning rate of linear evaluator.')
parser.add_argument('--wd1', type=float, default=0., help='Weight decay of mvgrl.')
parser.add_argument('--wd2', type=float, default=0., help='Weight decay of linear evaluator.')
parser.add_argument('--epsilon', type=float, default=0.01, help='Edge mask threshold of diffusion graph.')
parser.add_argument("--hid_dim", type=int, default=512, help='Hidden layer dim.')

args = parser.parse_args()

# check cuda
if args.gpu != -1 and th.cuda.is_available():
    args.device = 'cuda:{}'.format(args.gpu)
else:
    args.device = 'cpu'

if __name__ == '__main__':
    print(args)

    # Step 1: Prepare data =================================================================== #
    if args.dataname == 'pubmed':
        graph, diff_graph, feat, label, train_idx, val_idx, test_idx, edge_weight = process_dataset_appnp(args.epsilon)
    else:
        graph, diff_graph, feat, label, train_idx, val_idx, test_idx, edge_weight = process_dataset(args.dataname, args.epsilon)
    edge_weight = th.tensor(edge_weight).float()
    graph.ndata['feat'] = feat
    diff_graph.edata['edge_weight'] = edge_weight

    n_feat = feat.shape[1]
    n_classes = np.unique(label).shape[0]
    edge_weight = th.tensor(edge_weight).float()

    train_idx = train_idx.to(args.device)
    val_idx = val_idx.to(args.device)
    test_idx = test_idx.to(args.device)

    n_node = graph.number_of_nodes()

    sample_size = 2000

    lbl1 = th.ones(sample_size * 2)
    lbl2 = th.zeros(sample_size * 2)
    lbl = th.cat((lbl1, lbl2))
    lbl = lbl.to(args.device)

    # Step 2: Create model =================================================================== #
    model = MVGRL(n_feat, args.hid_dim)
    model = model.to(args.device)

    # Step 3: Create training components ===================================================== #
    optimizer = th.optim.Adam(model.parameters(), lr=args.lr1, weight_decay=args.wd1)
    loss_fn = nn.BCEWithLogitsLoss()

    node_list = list(range(n_node))

    # Step 4: Training epochs ================================================================ #
    best = float('inf')
    cnt_wait = 0
    for epoch in range(args.epochs):
        model.train()
        optimizer.zero_grad()

        sample_idx = random.sample(node_list, sample_size)

        g = dgl.node_subgraph(graph, sample_idx)
        dg = dgl.node_subgraph(diff_graph, sample_idx)

        f = g.ndata.pop('feat')
        ew = dg.edata.pop('edge_weight')

        shuf_idx = np.random.permutation(sample_size)
        sf = f[shuf_idx, :]

        g = g.to(args.device)
        dg = dg.to(args.device)
        f = f.to(args.device)
        ew = ew.to(args.device)

        sf = sf.to(args.device)

        out = model(g, dg, f, sf, ew)
        loss = loss_fn(out, lbl)

        loss.backward()
        optimizer.step()

        print('Epoch: {0}, Loss: {1:0.4f}'.format(epoch, loss.item()))

        if loss < best:
            best = loss
            cnt_wait = 0
            th.save(model.state_dict(), 'model.pkl')
        else:
            cnt_wait += 1

        if cnt_wait == args.patience:
            print('Early stopping')
            break

    model.load_state_dict(th.load('model.pkl'))

    graph = graph.to(args.device)
    diff_graph = diff_graph.to(args.device)
    feat = feat.to(args.device)
    edge_weight = edge_weight.to(args.device)
    embeds = model.get_embedding(graph, diff_graph, feat, edge_weight)

    train_embs = embeds[train_idx]
    test_embs = embeds[test_idx]

    label = label.to(args.device)
    train_labels = label[train_idx]
    test_labels = label[test_idx]
    accs = []

    # Step 5:  Linear evaluation ========================================================== #
    for _ in range(5):
        model = LogReg(args.hid_dim, n_classes)
        opt = th.optim.Adam(model.parameters(), lr=args.lr2, weight_decay=args.wd2)

        model = model.to(args.device)
        loss_fn = nn.CrossEntropyLoss()
        for epoch in range(300):
            model.train()
            opt.zero_grad()
            logits = model(train_embs)
            loss = loss_fn(logits, train_labels)
            loss.backward()
            opt.step()

        model.eval()
        logits = model(test_embs)
        preds = th.argmax(logits, dim=1)
        acc = th.sum(preds == test_labels).float() / test_labels.shape[0]
        accs.append(acc * 100)

    accs = th.stack(accs)
    print(accs.mean().item(), accs.std().item())