dataset.py 3.92 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
''' Code adapted from https://github.com/kavehhassani/mvgrl '''
import numpy as np
import torch as th
import scipy.sparse as sp
from scipy.linalg import fractional_matrix_power, inv

import dgl
from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset
import networkx as nx

from sklearn.preprocessing import MinMaxScaler

from dgl.nn import APPNPConv

def preprocess_features(features):
    """Row-normalize feature matrix and convert to tuple representation"""
    rowsum = np.array(features.sum(1))
    r_inv = np.power(rowsum, -1).flatten()
    r_inv[np.isinf(r_inv)] = 0.
    r_mat_inv = sp.diags(r_inv)
    features = r_mat_inv.dot(features)
    if isinstance(features, np.ndarray):
        return features
    else:
        return features.todense(), sparse_to_tuple(features)


def sparse_to_tuple(sparse_mx):
    """Convert sparse matrix to tuple representation."""

    def to_tuple(mx):
        if not sp.isspmatrix_coo(mx):
            mx = mx.tocoo()
        coords = np.vstack((mx.row, mx.col)).transpose()
        values = mx.data
        shape = mx.shape
        return coords, values, shape

    if isinstance(sparse_mx, list):
        for i in range(len(sparse_mx)):
            sparse_mx[i] = to_tuple(sparse_mx[i])
    else:
        sparse_mx = to_tuple(sparse_mx)

    return sparse_mx


def compute_ppr(graph: nx.Graph, alpha=0.2, self_loop=True):
    a = nx.convert_matrix.to_numpy_array(graph)
    if self_loop:
        a = a + np.eye(a.shape[0])  # A^ = A + I_n
    d = np.diag(np.sum(a, 1))  # D^ = Sigma A^_ii
    dinv = fractional_matrix_power(d, -0.5)  # D^(-1/2)
    at = np.matmul(np.matmul(dinv, a), dinv)  # A~ = D^(-1/2) x A^ x D^(-1/2)
    return alpha * inv((np.eye(a.shape[0]) - (1 - alpha) * at))  # a(I_n-(1-a)A~)^-1


def process_dataset(name, epsilon):
    if name == 'cora':
        dataset = CoraGraphDataset()
    elif name == 'citeseer':
        dataset = CiteseerGraphDataset()

    graph = dataset[0]
    feat = graph.ndata.pop('feat')
    label = graph.ndata.pop('label')

    train_mask = graph.ndata.pop('train_mask')
    val_mask = graph.ndata.pop('val_mask')
    test_mask = graph.ndata.pop('test_mask')

    train_idx = th.nonzero(train_mask, as_tuple=False).squeeze()
    val_idx = th.nonzero(val_mask, as_tuple=False).squeeze()
    test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()

    nx_g = dgl.to_networkx(graph)

    print('computing ppr')
    diff_adj = compute_ppr(nx_g, 0.2)
    print('computing end')

    if name == 'citeseer':
        print('additional processing')
        feat = th.tensor(preprocess_features(feat.numpy())).float()
        diff_adj[diff_adj < epsilon] = 0
        scaler = MinMaxScaler()
        scaler.fit(diff_adj)
        diff_adj = scaler.transform(diff_adj)

    diff_edges = np.nonzero(diff_adj)
    diff_weight = diff_adj[diff_edges]
    diff_graph = dgl.graph(diff_edges)

    graph = graph.add_self_loop()

    return graph, diff_graph, feat, label, train_idx, val_idx, test_idx, diff_weight

def process_dataset_appnp(epsilon):
    k = 20
    alpha = 0.2
    dataset = PubmedGraphDataset()
    graph = dataset[0]
    feat = graph.ndata.pop('feat')
    label = graph.ndata.pop('label')

    train_mask = graph.ndata.pop('train_mask')
    val_mask = graph.ndata.pop('val_mask')
    test_mask = graph.ndata.pop('test_mask')

    train_idx = th.nonzero(train_mask, as_tuple=False).squeeze()
    val_idx = th.nonzero(val_mask, as_tuple=False).squeeze()
    test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()

    appnp = APPNPConv(k, alpha)
    id = th.eye(graph.number_of_nodes()).float()
    diff_adj = appnp(graph.add_self_loop(), id).numpy()

    diff_adj[diff_adj < epsilon] = 0
    scaler = MinMaxScaler()
    scaler.fit(diff_adj)
    diff_adj = scaler.transform(diff_adj)
    diff_edges = np.nonzero(diff_adj)
    diff_weight = diff_adj[diff_edges]
    diff_graph = dgl.graph(diff_edges)

    return graph, diff_graph, feat, label, train_idx, val_idx, test_idx, diff_weight