"vscode:/vscode.git/clone" did not exist on "4efb98cb4fcd713cf4d272154f0e7201901193d1"
README.md 6.38 KB
Newer Older
1
2
## Distributed training

Chao Ma's avatar
Chao Ma committed
3
4
5
6
7
8
9
This is an example of training GraphSage in a distributed fashion. Before training, please install some python libs by pip:

```bash
sudo pip3 install ogb
```

To train GraphSage, it has five steps:
10

11
12
### Step 0: Setup a Distributed File System
* You may skip this step if your cluster already has folder(s) synchronized across machines.
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
To perform distributed training, files and codes need to be accessed across multiple machines. A distributed file system would perfectly handle the job (i.e., NFS, Ceph).

#### Server side setup
Here is an example of how to setup NFS. First, install essential libs on the storage server
```bash
sudo apt-get install nfs-kernel-server
```

Below we assume the user account is `ubuntu` and we create a directory of `workspace` in the home directory.
```bash
mkdir -p /home/ubuntu/workspace
```

We assume that the all servers are under a subnet with ip range `192.168.0.0` to `192.168.255.255`. The exports configuration needs to be modifed to

```bash
sudo vim /etc/exports
# add the following line
/home/ubuntu/workspace  192.168.0.0/16(rw,sync,no_subtree_check)
```

The server's internal ip can be checked  via `ifconfig` or `ip`. If the ip does not begin with `192.168`, then you may use
```bash
/home/ubuntu/workspace  10.0.0.0/8(rw,sync,no_subtree_check)
/home/ubuntu/workspace  172.16.0.0/12(rw,sync,no_subtree_check)
```

Then restart NFS, the setup on server side is finished.

```
sudo systemctl restart nfs-kernel-server
```

For configraution details, please refer to [NFS ArchWiki](https://wiki.archlinux.org/index.php/NFS).

#### Client side setup

To use NFS, clients also require to install essential packages

```
sudo apt-get install nfs-common
```

You can either mount the NFS manually

```
mkdir -p /home/ubuntu/workspace
sudo mount -t nfs <nfs-server-ip>:/home/ubuntu/workspace /home/ubuntu/workspace
```

or edit the fstab so the folder will be mounted automatically

```
# vim /etc/fstab
## append the following line to the file
<nfs-server-ip>:/home/ubuntu/workspace   /home/ubuntu/workspace   nfs   defaults	0 0
```

Then run `mount -a`.

Now go to `/home/ubuntu/workspace` and clone the DGL Github repository.

### Step 1: set IP configuration file.

User need to set their own IP configuration file `ip_config.txt` before training. For example, if we have four machines in current cluster, the IP configuration
79
80
81
82
83
84
85
86
87
could like this:

```bash
172.31.19.1
172.31.23.205
172.31.29.175
172.31.16.98
```

88
89
Users need to make sure that the master node (node-0) has right permission to ssh to all the other nodes without password authentication.
[This link](https://linuxize.com/post/how-to-setup-passwordless-ssh-login/) provides instructions of setting passwordless SSH login.
90

91
### Step 2: partition the graph.
92
93
94
95
96
97
98
99
100

The example provides a script to partition some builtin graphs such as Reddit and OGB product graph.
If we want to train GraphSage on 4 machines, we need to partition the graph into 4 parts.

We need to load some function from the parent directory.
```bash
export PYTHONPATH=$PYTHONPATH:..
```

101
In this example, we partition the OGB product graph into 4 parts with Metis on node-0. The partitions are balanced with respect to
102
103
104
105
106
the number of nodes, the number of edges and the number of labelled nodes.
```bash
python3 partition_graph.py --dataset ogb-product --num_parts 4 --balance_train --balance_edges
```

107
108
This script generates partitioned graphs and store them in the directory called `data`.

109
110

### Step 3: Launch distributed jobs
111

112
113
DGL provides a script to launch the training job in the cluster. `part_config` and `ip_config`
specify relative paths to the path of the workspace.
114

115
116
117
118
The command below launches one training process on each machine and each training process has 4 sampling processes.
**Note**: There is a known bug in Python 3.8. The training process hangs when running multiple sampling processes for each training process.
Please set the number of sampling processes to 0 if you are using Python 3.8.

119
```bash
120
121
python3 ~/workspace/dgl/tools/launch.py \
--workspace ~/workspace/dgl/examples/pytorch/graphsage/experimental/ \
122
123
--num_trainers 1 \
--num_samplers 4 \
124
--num_servers 1 \
125
--part_config data/ogb-product.json \
126
--ip_config ip_config.txt \
127
"python3 train_dist.py --graph_name ogb-product --ip_config ip_config.txt --num_servers 1 --num_epochs 30 --batch_size 1000 --num_workers 4"
128
```
129

130
131
132
To run unsupervised training:

```bash
133
134
python3 ~/workspace/dgl/tools/launch.py \
--workspace ~/workspace/dgl/examples/pytorch/graphsage/experimental/ \
135
--num_trainers 1 \
136
137
--num_samplers 4 \
--num_servers 1 \
138
--part_config data/ogb-product.json \
139
--ip_config ip_config.txt \
140
"python3 train_dist_unsupervised.py --graph_name ogb-product --ip_config ip_config.txt --num_servers 1 --num_epochs 3 --batch_size 1000 --num_workers 4"
141
142
143
144
145
```

By default, this code will run on CPU. If you have GPU support, you can just add a `--num_gpus` argument in user command:

```bash
146
147
python3 ~/workspace/dgl/tools/launch.py \
--workspace ~/workspace/dgl/examples/pytorch/graphsage/experimental/ \
148
149
--num_trainers 4 \
--num_samplers 4 \
150
--num_servers 1 \
151
--part_config data/ogb-product.json \
152
--ip_config ip_config.txt \
153
"python3 train_dist.py --graph_name ogb-product --ip_config ip_config.txt --num_servers 1 --num_epochs 30 --batch_size 1000 --num_workers 4 --num_gpus 4"
154
155
```

156
**Note:** if you are using conda or other virtual environments on the remote machines, you need to replace `python3` in the command string (i.e. the last argument) with the path to the Python interpreter in that environment.
157

158
159
160
161
162
163
164
165
166
167
168
169
170
## Distributed code runs in the standalone mode

The standalone mode is mainly used for development and testing. The procedure to run the code is much simpler.

### Step 1: graph construction.

When testing the standalone mode of the training script, we should construct a graph with one partition.
```bash
python3 partition_graph.py --dataset ogb-product --num_parts 1
```

### Step 2: run the training script

171
172
To run supervised training:

173
```bash
174
python3 train_dist.py --graph_name ogb-product --ip_config ip_config.txt --num_epochs 3 --batch_size 1000 --part_config data/ogb-product.json --standalone
175
176
```

177
178
179
To run unsupervised training:

```bash
180
python3 train_dist_unsupervised.py --graph_name ogb-product --ip_config ip_config.txt --num_epochs 3 --batch_size 1000 --part_config data/ogb-product.json --standalone
181
182
```

183
Note: please ensure that all environment variables shown above are unset if they were set for testing distributed training.