utils.py 7.81 KB
Newer Older
Lingfan Yu's avatar
Lingfan Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""
Utility functions for link prediction
Most code is adapted from authors' implementation of RGCN link prediction:
https://github.com/MichSchli/RelationPrediction

"""

import numpy as np
import torch
import dgl

#######################################################################
#
# Utility function for building training and testing graphs
#
#######################################################################

def get_adj_and_degrees(num_nodes, triplets):
    """ Get adjacency list and degrees of the graph
    """
    adj_list = [[] for _ in range(num_nodes)]
    for i,triplet in enumerate(triplets):
        adj_list[triplet[0]].append([i, triplet[2]])
        adj_list[triplet[2]].append([i, triplet[0]])

    degrees = np.array([len(a) for a in adj_list])
    adj_list = [np.array(a) for a in adj_list]
    return adj_list, degrees

def sample_edge_neighborhood(adj_list, degrees, n_triplets, sample_size):
    """ Edge neighborhood sampling to reduce training graph size
    """

    edges = np.zeros((sample_size), dtype=np.int32)

    #initialize
    sample_counts = np.array([d for d in degrees])
    picked = np.array([False for _ in range(n_triplets)])
    seen = np.array([False for _ in degrees])

    for i in range(0, sample_size):
        weights = sample_counts * seen

        if np.sum(weights) == 0:
            weights = np.ones_like(weights)
            weights[np.where(sample_counts == 0)] = 0

        probabilities = (weights) / np.sum(weights)
        chosen_vertex = np.random.choice(np.arange(degrees.shape[0]),
                                         p=probabilities)
        chosen_adj_list = adj_list[chosen_vertex]
        seen[chosen_vertex] = True

        chosen_edge = np.random.choice(np.arange(chosen_adj_list.shape[0]))
        chosen_edge = chosen_adj_list[chosen_edge]
        edge_number = chosen_edge[0]

        while picked[edge_number]:
            chosen_edge = np.random.choice(np.arange(chosen_adj_list.shape[0]))
            chosen_edge = chosen_adj_list[chosen_edge]
            edge_number = chosen_edge[0]

        edges[i] = edge_number
        other_vertex = chosen_edge[1]
        picked[edge_number] = True
        sample_counts[chosen_vertex] -= 1
        sample_counts[other_vertex] -= 1
        seen[other_vertex] = True

    return edges

def generate_sampled_graph_and_labels(triplets, sample_size, split_size,
                                      num_rels, adj_list, degrees,
                                      negative_rate):
    """Get training graph and signals
    First perform edge neighborhood sampling on graph, then perform negative
    sampling to generate negative samples
    """
    # perform edge neighbor sampling
    edges = sample_edge_neighborhood(adj_list, degrees, len(triplets),
                                     sample_size)

    # relabel nodes to have consecutive node ids
    edges = triplets[edges]
    src, rel, dst = edges.transpose()
    uniq_v, edges = np.unique((src, dst), return_inverse=True)
    src, dst = np.reshape(edges, (2, -1))
    relabeled_edges = np.stack((src, rel, dst)).transpose()

    # negative sampling
    samples, labels = negative_sampling(relabeled_edges, len(uniq_v),
                                        negative_rate)

    # further split graph, only half of the edges will be used as graph
    # structure, while the rest half is used as unseen positive samples
    split_size = int(sample_size * split_size)
    graph_split_ids = np.random.choice(np.arange(sample_size),
                                       size=split_size, replace=False)
    src = src[graph_split_ids]
    dst = dst[graph_split_ids]
    rel = rel[graph_split_ids]

    # build DGL graph
    print("# sampled nodes: {}".format(len(uniq_v)))
    print("# sampled edges: {}".format(len(src) * 2))
    g, rel, norm = build_graph_from_triplets(len(uniq_v), num_rels,
                                             (src, rel, dst))
    return g, uniq_v, rel, norm, samples, labels

def comp_deg_norm(g):
    in_deg = g.in_degrees(range(g.number_of_nodes())).float().numpy()
    norm = 1.0 / in_deg
    norm[np.isinf(norm)] = 0
    return norm

def build_graph_from_triplets(num_nodes, num_rels, triplets):
    """ Create a DGL graph. The graph is bidirectional because RGCN authors
        use reversed relations.
        This function also generates edge type and normalization factor
        (reciprocal of node incoming degree)
    """
    g = dgl.DGLGraph()
    g.add_nodes(num_nodes)
    src, rel, dst = triplets
    src, dst = np.concatenate((src, dst)), np.concatenate((dst, src))
    rel = np.concatenate((rel, rel + num_rels))
    edges = sorted(zip(dst, src, rel))
    dst, src, rel = np.array(edges).transpose()
    g.add_edges(src, dst)
    norm = comp_deg_norm(g)
    print("# nodes: {}, # edges: {}".format(num_nodes, len(src)))
    return g, rel, norm

def build_test_graph(num_nodes, num_rels, edges):
    src, rel, dst = edges.transpose()
    print("Test graph:")
    return build_graph_from_triplets(num_nodes, num_rels, (src, rel, dst))

def negative_sampling(pos_samples, num_entity, negative_rate):
    size_of_batch = len(pos_samples)
    num_to_generate = size_of_batch * negative_rate
    neg_samples = np.tile(pos_samples, (negative_rate, 1))
    labels = np.zeros(size_of_batch * (negative_rate + 1), dtype=np.float32)
    labels[: size_of_batch] = 1
    values = np.random.randint(num_entity, size=num_to_generate)
    choices = np.random.uniform(size=num_to_generate)
    subj = choices > 0.5
    obj = choices <= 0.5
    neg_samples[subj, 0] = values[subj]
    neg_samples[obj, 2] = values[obj]

    return np.concatenate((pos_samples, neg_samples)), labels

#######################################################################
#
# Utility function for evaluations
#
#######################################################################

def sort_and_rank(score, target):
    _, indices = torch.sort(score, dim=1, descending=True)
    indices = torch.nonzero(indices == target.view(-1, 1))
    indices = indices[:, 1].view(-1)
    return indices

def perturb_and_get_rank(embedding, w, a, r, b, num_entity, batch_size=100):
    """ Perturb one element in the triplets
    """
    n_batch = (num_entity + batch_size - 1) // batch_size
    ranks = []
    for idx in range(n_batch):
        print("batch {} / {}".format(idx, n_batch))
        batch_start = idx * batch_size
        batch_end = min(num_entity, (idx + 1) * batch_size)
        batch_a = a[batch_start: batch_end]
        batch_r = r[batch_start: batch_end]
        emb_ar = embedding[batch_a] * w[batch_r]
        emb_ar = emb_ar.transpose(0, 1).unsqueeze(2) # size: D x E x 1
        emb_c = embedding.transpose(0, 1).unsqueeze(1) # size: D x 1 x V
        # out-prod and reduce sum
        out_prod = torch.bmm(emb_ar, emb_c) # size D x E x V
        score = torch.sum(out_prod, dim=0) # size E x V
        score = torch.sigmoid(score)
        target = b[batch_start: batch_end]
        ranks.append(sort_and_rank(score, target))
    return torch.cat(ranks)

# TODO (lingfan): implement filtered metrics
# return MRR (raw), and Hits @ (1, 3, 10)
def evaluate(test_graph, model, test_triplets, num_entity, hits=[], eval_bz=100):
    with torch.no_grad():
        embedding, w = model.evaluate(test_graph)
        s = test_triplets[:, 0]
        r = test_triplets[:, 1]
        o = test_triplets[:, 2]

        # perturb subject
        ranks_s = perturb_and_get_rank(embedding, w, o, r, s, num_entity, eval_bz)
        # perturb object
        ranks_o = perturb_and_get_rank(embedding, w, s, r, o, num_entity, eval_bz)

        ranks = torch.cat([ranks_s, ranks_o])
        ranks += 1 # change to 1-indexed

        mrr = torch.mean(1.0 / ranks.float())
        print("MRR (raw): {:.6f}".format(mrr.item()))

        for hit in hits:
            avg_count = torch.mean((ranks <= hit).float())
            print("Hits (raw) @ {}: {:.6f}".format(hit, avg_count.item()))
    return mrr.item()