gnn.py 7.88 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
"""
Supervised Community Detection with Hierarchical Graph Neural Networks
https://arxiv.org/abs/1705.08415

Deviations from paper:
- Addition of global aggregation operator.
- Message passing is equivalent to `A^j \cdot X`, instead of `\min(1, A^j) \cdot X`.
"""


# TODO self-loop?
# TODO in-place edit of node_reprs/edge_reprs in message_func/update_func?
# TODO batch-norm


import copy
import itertools
import dgl.graph as G
import networkx as nx
import torch as th
import torch.nn as nn


class GLGModule(nn.Module):
    __SHADOW__ = 'shadow'
    def __init__(self, in_feats, out_feats, radius):
        super().__init__()
        self.radius = radius

        new_linear = lambda: nn.Linear(in_feats, out_feats)
        new_module_list = lambda: nn.ModuleList([new_linear() for i in range(radius)])

        self.theta_x, self.theta_y, self.theta_deg, self.theta_global = \
            new_linear(), new_linear(), new_linear(), new_linear()
        self.theta_list = new_module_list()

        self.gamma_x, self.gamma_y, self.gamma_deg, self.gamma_global = \
            new_linear(), new_linear(), new_linear(), new_linear()
        self.gamma_list = new_module_list()

    @staticmethod
    def copy(which):
        if which == 'src':
            return lambda src, trg, _: src.copy()
        elif which == 'trg':
            return lambda src, trg, _: trg.copy()

    @staticmethod
    def aggregate(msg_fld, trg_fld, normalize=False):
        def a(node_reprs, edge_reprs):
            node_reprs = node_reprs.copy()
            node_reprs[trg_fld] = sum(msg[msg_fld] for msg in edge_reprs)
            if normalize:
                node_reprs[trg_fld] /= len(edge_reprs)
            return node_reprs
        return a

    @staticmethod
    def pull(msg_fld, trg_fld):
        def p(node_reprs, edge_reprs):
            node_reprs = node_reprs.copy()
            node_reprs[trg_fld] = edge_reprs[0][msg_fld]
            return node_reprs
        return p

    def local_aggregate(self, g):
        def step():
            g.register_message_func(self.copy('src'), g.edges)
            g.register_update_func(self.aggregate('x', 'x'), g.nodes)
            g.update_all()

        step()
        for reprs in g.nodes.values():
            reprs[0] = reprs['x']
        for i in range(1, self.radius):
            for j in range(2 ** (i - 1)):
                step()
            for reprs in g.nodes.values():
                reprs[i] = reprs['x']

    @staticmethod
    def global_aggregate(g):
        shadow = GLGModule.__SHADOW__
        copy, aggregate, pull = GLGModule.copy, GLGModule.aggregate, GLGModule.pull

        node_list = list(g.nodes)
        uv_list = [(node, shadow) for node in g.nodes]
        vu_list = [(shadow, node) for node in g.nodes]

        g.add_node(shadow) # TODO context manager

        tuple(itertools.starmap(g.add_edge, uv_list))
        g.register_message_func(copy('src'), uv_list)
        g.register_update_func(aggregate('x', 'global', normalize=True), (shadow,))
        g.update_to(shadow)

        tuple(itertools.starmap(g.add_edge, vu_list))
        g.register_message_func(copy('src'), vu_list)
        g.register_update_func(pull('global', 'global'), node_list)
        g.update_from(shadow)

        g.remove_node(shadow)

    @staticmethod
    def multiply_by_degree(g):
        g.register_message_func(lambda *args: None, g.edges)
        def update_func(node_reprs, _):
            node_reprs = node_reprs.copy()
            node_reprs['deg'] = node_reprs['x'] * node_reprs['degree']
            return node_reprs
        g.register_update_func(update_func, g.nodes)
        g.update_all()

    @staticmethod
    def message_func(src, trg, _):
        return {'y' : src['x']}

    def update_func(self, which):
        if which == 'node':
            linear_x, linear_y, linear_deg, linear_global = \
                self.theta_x, self.theta_y, self.theta_deg, self.theta_global
            linear_list = self.theta_list
        elif which == 'edge':
            linear_x, linear_y, linear_deg, linear_global = \
                self.gamma_x, self.gamma_y, self.gamma_deg, self.gamma_global
            linear_list = self.gamma_list

        def u(node_reprs, edge_reprs):
            edge_reprs = filter(lambda x: x is not None, edge_reprs)
            y = sum(x['y'] for x in edge_reprs)
            node_reprs = node_reprs.copy()
            node_reprs['x'] = linear_x(node_reprs['x']) \
                            + linear_y(y) \
                            + linear_deg(node_reprs['deg']) \
                            + linear_global(node_reprs['global']) \
                            + sum(linear(node_reprs[i]) \
                                  for i, linear in enumerate(linear_list))
            return node_reprs

        return u

    def forward(self, g, lg, glg):
        self.local_aggregate(g)
        self.local_aggregate(lg)

        self.global_aggregate(g)
        self.global_aggregate(lg)

        self.multiply_by_degree(g)
        self.multiply_by_degree(lg)

        # TODO efficiency
        for node, reprs in g.nodes.items():
            glg.nodes[node].update(reprs)
        for node, reprs in lg.nodes.items():
            glg.nodes[node].update(reprs)

        glg.register_message_func(self.message_func, glg.edges)
        glg.register_update_func(self.update_func('node'), g.nodes)
        glg.register_update_func(self.update_func('edge'), lg.nodes)
        glg.update_all()

        # TODO efficiency
        for node, reprs in g.nodes.items():
            reprs.update(glg.nodes[node])
        for node, reprs in lg.nodes.items():
            reprs.update(glg.nodes[node])


class GNNModule(nn.Module):
    def __init__(self, in_feats, out_feats, order, radius):
        super().__init__()
        self.module_list = nn.ModuleList([GLGModule(in_feats, out_feats, radius)
                                          for i in range(order)])

    def forward(self, pairs, fusions):
        for module, (g, lg), glg in zip(self.module_list, pairs, fusions):
            module(g, lg, glg)
        for lhs, rhs in zip(pairs[:-1], pairs[1:]):
            for node, reprs in lhs[1].nodes.items():
                x_rhs = reprs['x']
                reprs['x'] = x_rhs + rhs[0].nodes[node]['x']
                rhs[0].nodes[node]['x'] += x_rhs


class GNN(nn.Module):
    def __init__(self, feats, order, radius, n_classes):
        super().__init__()
        self.order = order
        self.linear = nn.Linear(feats[-1], n_classes)
        self.module_list = nn.ModuleList([GNNModule(in_feats, out_feats, order, radius)
                            for in_feats, out_feats in zip(feats[:-1], feats[1:])])

    @staticmethod
    def line_graph(g):
        lg = nx.line_graph(g)
        glg = nx.DiGraph()
        glg.add_nodes_from(g.nodes)
        glg.add_nodes_from(lg.nodes)
        for u, v in g.edges:
            glg.add_edge(u, (u, v))
            glg.add_edge((u, v), u)
            glg.add_edge(v, (u, v))
            glg.add_edge((u, v), v)
        return lg, glg

    @staticmethod
    def nx2dgl(g):
        deg_dict = dict(nx.degree(g))
        z = sum(deg_dict.values())
        dgl_g = G.DGLGraph(g)
        for node, reprs in dgl_g.nodes.items():
            reprs['degree'] = deg_dict[node]
            reprs['x'] = th.full((1, 1), reprs['degree'] / z)
            reprs.update(g.nodes[node])
        return dgl_g
    
    def forward(self, g):
        """
        Parameters
        ----------
        g : networkx.DiGraph
        """
        pair_list, glg_list = [], []
        dgl_g = self.nx2dgl(g)
        origin = dgl_g
        for i in range(self.order):
            lg, glg = self.line_graph(g)
            dgl_lg = self.nx2dgl(lg)
            pair_list.append((dgl_g, copy.deepcopy(dgl_lg)))
            glg_list.append(G.DGLGraph(glg))

            g = lg
            dgl_g = dgl_lg

        for module in self.module_list:
            module(pair_list, glg_list)

        return self.linear(th.cat([reprs['x'] for reprs in origin.nodes.values()], 0))