train.py 7.13 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
"""
Graph Attention Networks in DGL using SPMV optimization.
Multiple heads are also batched together for faster training.
Compared with the original paper, this code does not implement
early stopping.
References
----------
Paper: https://arxiv.org/abs/1710.10903
Author's code: https://github.com/PetarV-/GAT
Pytorch implementation: https://github.com/Diego999/pyGAT
"""

import argparse
import time
15

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
16
17
import dgl

18
19
import networkx as nx
import numpy as np
20
import tensorflow as tf
21
22
23
24
25
26
from dgl.data import (
    CiteseerGraphDataset,
    CoraGraphDataset,
    PubmedGraphDataset,
    register_data_args,
)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
27
28
from gat import GAT
from utils import EarlyStopping
29
30


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
def accuracy(logits, labels):
    indices = tf.math.argmax(logits, axis=1)
    acc = tf.reduce_mean(tf.cast(indices == labels, dtype=tf.float32))
    return acc.numpy().item()


def evaluate(model, features, labels, mask):
    logits = model(features, training=False)
    logits = logits[mask]
    labels = labels[mask]
    return accuracy(logits, labels)


def main(args):
    # load and preprocess dataset
46
    if args.dataset == "cora":
47
        data = CoraGraphDataset()
48
    elif args.dataset == "citeseer":
49
        data = CiteseerGraphDataset()
50
    elif args.dataset == "pubmed":
51
52
        data = PubmedGraphDataset()
    else:
53
        raise ValueError("Unknown dataset: {}".format(args.dataset))
54

55
    g = data[0]
56
57
58
59
    if args.gpu < 0:
        device = "/cpu:0"
    else:
        device = "/gpu:{}".format(args.gpu)
60
        g = g.to(device)
61
62

    with tf.device(device):
63
64
65
66
67
        features = g.ndata["feat"]
        labels = g.ndata["label"]
        train_mask = g.ndata["train_mask"]
        val_mask = g.ndata["val_mask"]
        test_mask = g.ndata["test_mask"]
68
69
        num_feats = features.shape[1]
        n_classes = data.num_labels
70
        n_edges = g.number_of_edges()
71
72
        print(
            """----Data statistics------'
73
        #Edges %d
74
        #Classes %d
75
76
        #Train samples %d
        #Val samples %d
77
78
79
80
81
82
83
84
85
        #Test samples %d"""
            % (
                n_edges,
                n_classes,
                train_mask.numpy().sum(),
                val_mask.numpy().sum(),
                test_mask.numpy().sum(),
            )
        )
86

87
88
        g = dgl.remove_self_loop(g)
        g = dgl.add_self_loop(g)
89
90
91
        n_edges = g.number_of_edges()
        # create model
        heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads]
92
93
94
95
96
97
98
99
100
101
102
103
104
        model = GAT(
            g,
            args.num_layers,
            num_feats,
            args.num_hidden,
            n_classes,
            heads,
            tf.nn.elu,
            args.in_drop,
            args.attn_drop,
            args.negative_slope,
            args.residual,
        )
105
106
107
108
109
110
111
112
113
114
        print(model)
        if args.early_stop:
            stopper = EarlyStopping(patience=100)

        # loss_fcn = tf.keras.losses.SparseCategoricalCrossentropy(
        #     from_logits=False)
        loss_fcn = tf.nn.sparse_softmax_cross_entropy_with_logits

        # use optimizer
        optimizer = tf.keras.optimizers.Adam(
115
116
            learning_rate=args.lr, epsilon=1e-8
        )
117
118
119
120
121
122
123
124
125
126

        # initialize graph
        dur = []
        for epoch in range(args.epochs):
            if epoch >= 3:
                t0 = time.time()
            # forward
            with tf.GradientTape() as tape:
                tape.watch(model.trainable_weights)
                logits = model(features, training=True)
127
128
129
130
131
                loss_value = tf.reduce_mean(
                    loss_fcn(
                        labels=labels[train_mask], logits=logits[train_mask]
                    )
                )
132
                # Manually Weight Decay
133
                # We found Tensorflow has a different implementation on weight decay
134
135
136
                # of Adam(W) optimizer with PyTorch. And this results in worse results.
                # Manually adding weights to the loss to do weight decay solves this problem.
                for weight in model.trainable_weights:
137
138
139
                    loss_value = loss_value + args.weight_decay * tf.nn.l2_loss(
                        weight
                    )
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

                grads = tape.gradient(loss_value, model.trainable_weights)
                optimizer.apply_gradients(zip(grads, model.trainable_weights))

            if epoch >= 3:
                dur.append(time.time() - t0)

            train_acc = accuracy(logits[train_mask], labels[train_mask])

            if args.fastmode:
                val_acc = accuracy(logits[val_mask], labels[val_mask])
            else:
                val_acc = evaluate(model, features, labels, val_mask)
                if args.early_stop:
                    if stopper.step(val_acc, model):
                        break

157
158
159
160
161
162
163
164
165
166
167
            print(
                "Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | TrainAcc {:.4f} |"
                " ValAcc {:.4f} | ETputs(KTEPS) {:.2f}".format(
                    epoch,
                    np.mean(dur),
                    loss_value.numpy().item(),
                    train_acc,
                    val_acc,
                    n_edges / np.mean(dur) / 1000,
                )
            )
168
169
170

        print()
        if args.early_stop:
171
            model.load_weights("es_checkpoint.pb")
172
173
174
175
        acc = evaluate(model, features, labels, test_mask)
        print("Test Accuracy {:.4f}".format(acc))


176
177
if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="GAT")
178
    register_data_args(parser)
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    parser.add_argument(
        "--gpu",
        type=int,
        default=-1,
        help="which GPU to use. Set -1 to use CPU.",
    )
    parser.add_argument(
        "--epochs", type=int, default=200, help="number of training epochs"
    )
    parser.add_argument(
        "--num-heads",
        type=int,
        default=8,
        help="number of hidden attention heads",
    )
    parser.add_argument(
        "--num-out-heads",
        type=int,
        default=1,
        help="number of output attention heads",
    )
    parser.add_argument(
        "--num-layers", type=int, default=1, help="number of hidden layers"
    )
    parser.add_argument(
        "--num-hidden", type=int, default=8, help="number of hidden units"
    )
    parser.add_argument(
        "--residual",
        action="store_true",
        default=False,
        help="use residual connection",
    )
    parser.add_argument(
        "--in-drop", type=float, default=0.6, help="input feature dropout"
    )
    parser.add_argument(
        "--attn-drop", type=float, default=0.6, help="attention dropout"
    )
    parser.add_argument("--lr", type=float, default=0.005, help="learning rate")
    parser.add_argument(
        "--weight-decay", type=float, default=5e-4, help="weight decay"
    )
    parser.add_argument(
        "--negative-slope",
        type=float,
        default=0.2,
        help="the negative slope of leaky relu",
    )
    parser.add_argument(
        "--early-stop",
        action="store_true",
        default=False,
        help="indicates whether to use early stop or not",
    )
    parser.add_argument(
        "--fastmode",
        action="store_true",
        default=False,
        help="skip re-evaluate the validation set",
    )
240
241
    args = parser.parse_args()
    print(args)
242

243
    main(args)