cnumpy.cc 7.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
/**
 *  Copyright (c) 2023 by Contributors
 * @file cnumpy.cc
 * @brief Numpy File Fetecher class.
 */

#include "cnumpy.h"

#include <torch/torch.h>

#include <cstring>
#include <regex>
#include <stdexcept>

namespace graphbolt {
namespace storage {

static constexpr int kDiskAlignmentSize = 4096;

OnDiskNpyArray::OnDiskNpyArray(
    std::string filename, torch::ScalarType dtype, torch::Tensor shape)
    : filename_(filename), dtype_(dtype) {
#ifdef __linux__
  ParseNumpyHeader(shape);
  file_description_ = open(filename.c_str(), O_RDONLY | O_DIRECT);
  if (file_description_ == -1) {
    throw std::runtime_error("npy_load: Unable to open file " + filename);
  }

  // Get system max thread number.
  num_thread_ = torch::get_num_threads();
  io_uring_queue_ = new io_uring[num_thread_];

  // Init io_uring queue.
  for (int64_t t = 0; t < num_thread_; t++) {
    io_uring_queue_init(group_size_, &io_uring_queue_[t], 0);
  }
#endif  // __linux__
}

c10::intrusive_ptr<OnDiskNpyArray> OnDiskNpyArray::Create(
    std::string path, torch::ScalarType dtype, torch::Tensor shape) {
  return c10::make_intrusive<OnDiskNpyArray>(path, dtype, shape);
}

OnDiskNpyArray::~OnDiskNpyArray() {
#ifdef __linux__
  // IO queue exit.
  for (int64_t t = 0; t < num_thread_; t++) {
    io_uring_queue_exit(&io_uring_queue_[t]);
  }
  close(file_description_);
#endif  // __linux__
}

void OnDiskNpyArray::ParseNumpyHeader(torch::Tensor shape) {
#ifdef __linux__
  // Parse numpy file header to get basic info of feature.
  size_t word_size = c10::elementSize(dtype_);
  int64_t num_dim = shape.numel();
  auto shape_ptr = shape.data_ptr<int64_t>();
  for (int64_t d = 0; d < num_dim; d++) {
    feature_dim_.emplace_back(shape_ptr[d]);
  }
  // Compute single feature size.
  signed long feature_length = 1;
  for (size_t i = 1; i < feature_dim_.size(); i++) {
    feature_length *= feature_dim_[i];
  }
  feature_size_ = feature_length * word_size;

  // Get file prefix length.
  std::ifstream file(filename_);
  if (!file.is_open()) {
    throw std::runtime_error(
        "ParseNumpyHeader: Unable to open file " + filename_);
  }
  std::string header;
  std::getline(file, header);
  // Get prefix length for computing feature offset,
  // add one for new-line character.
  prefix_len_ = header.size() + 1;
#endif  // __linux__
}

torch::Tensor OnDiskNpyArray::IndexSelect(torch::Tensor index) {
#ifdef __linux__
  return IndexSelectIOUring(index);
#else
  TORCH_CHECK(false, "OnDiskNpyArray is not supported on non-Linux systems.");
  return torch::empty({0});
#endif  // __linux__
}

#ifdef __linux__
torch::Tensor OnDiskNpyArray::IndexSelectIOUring(torch::Tensor index) {
  index = index.to(torch::kLong);
  // The minimum page size to contain one feature.
  int64_t aligned_length =
      (feature_size_ + kDiskAlignmentSize) & (long)~(kDiskAlignmentSize - 1);
  int64_t num_index = index.numel();

  char *read_buffer = (char *)aligned_alloc(
      kDiskAlignmentSize,
      (aligned_length + kDiskAlignmentSize) * group_size_ * num_thread_);
  char *result_buffer =
      (char *)aligned_alloc(kDiskAlignmentSize, feature_size_ * num_index);

  auto index_data = index.data_ptr<int64_t>();

  // Record the inside offsets of feteched features.
  int64_t residual[group_size_ * num_thread_];

  // Indicator for index error.
  std::atomic<bool> error_flag{};
  TORCH_CHECK(
      num_thread_ >= torch::get_num_threads(),
      "The number of threads can not be changed to larger than the number of "
      "threads when a disk feature fetcher is constructed.");
  torch::parallel_for(
      0, num_index, group_size_, [&](int64_t begin, int64_t end) {
        auto thread_id = torch::get_thread_num();
        if (!error_flag.load()) {
          for (int64_t i = begin; i < end; i++) {
            int64_t group_id = i - begin;
            int64_t feature_id = index_data[i];  // Feature id.
            if (feature_id >= feature_dim_[0]) {
              error_flag.store(true);
              break;
            }
            int64_t offset = feature_id * feature_size_ + prefix_len_;
            int64_t aligned_offset = offset & (long)~(kDiskAlignmentSize - 1);
            residual[thread_id * group_size_ + group_id] =
                offset - aligned_offset;

            int64_t read_size;
            if (residual[thread_id * group_size_ + group_id] + feature_size_ >
                kDiskAlignmentSize) {
              read_size = aligned_length + kDiskAlignmentSize;
            } else {
              read_size = aligned_length;
            }

            // Put requests into io_uring queue.
            struct io_uring_sqe *submit_queue =
                io_uring_get_sqe(&io_uring_queue_[thread_id]);
            io_uring_prep_read(
                submit_queue, file_description_,
                read_buffer +
                    ((aligned_length + kDiskAlignmentSize) * group_size_ *
                     thread_id) +
                    ((aligned_length + kDiskAlignmentSize) * group_id),
                read_size, aligned_offset);
          }
        }
        if (!error_flag.load()) {
          // Submit I/O requests.
          io_uring_submit(&io_uring_queue_[thread_id]);

          // Wait for completion of I/O requests.
          int64_t num_finish = 0;
          // Wait until all the disk blocks are loaded in current group.
          while (num_finish < end - begin) {
            struct io_uring_cqe *complete_queue;
            if (io_uring_wait_cqe(
                    &io_uring_queue_[thread_id], &complete_queue) < 0) {
              perror("io_uring_wait_cqe");
              abort();
            }
            struct io_uring_cqe *complete_queues[group_size_];
            int cqe_count = io_uring_peek_batch_cqe(
                &io_uring_queue_[thread_id], complete_queues, group_size_);
            if (cqe_count == -1) {
              perror("io_uring_peek_batch error\n");
              abort();
            }
            // Move the head pointer of completion queue.
            io_uring_cq_advance(&io_uring_queue_[thread_id], cqe_count);
            num_finish += cqe_count;
          }

          // Copy the features in the disk blocks to the result buffer.
          for (int64_t group_id = 0; group_id < end - begin; group_id++) {
            memcpy(
                result_buffer + feature_size_ * (begin + group_id),
                read_buffer +
                    ((aligned_length + kDiskAlignmentSize) * group_size_ *
                     thread_id) +
                    ((aligned_length + kDiskAlignmentSize) * group_id +
                     residual[thread_id * group_size_ + group_id]),
                feature_size_);
          }
        }
      });

  auto result = torch::empty({0});
  if (!error_flag.load()) {
    auto options = torch::TensorOptions()
                       .dtype(dtype_)
                       .layout(torch::kStrided)
                       .device(torch::kCPU)
                       .requires_grad(false);

    std::vector<int64_t> shape;
    shape.push_back(num_index);
    shape.insert(shape.end(), feature_dim_.begin() + 1, feature_dim_.end());
    result = torch::from_blob(result_buffer, torch::IntArrayRef(shape), options)
                 .clone();
  } else {
    throw std::runtime_error("IndexError: Index out of range.");
  }

  free(read_buffer);
  free(result_buffer);

  return result;
}
#endif  // __linux__

}  // namespace storage
}  // namespace graphbolt