ondisk_dataset_homograph.ipynb 18.3 KB
Newer Older
1
2
3
4
5
6
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "private_outputs": true,
7
      "provenance": []
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "# OnDiskDataset for Homogeneous Graph\n",
        "\n",
        "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/dmlc/dgl/blob/master/notebooks/stochastic_training/ondisk_dataset_homograph.ipynb) [![GitHub](https://img.shields.io/badge/-View%20on%20GitHub-181717?logo=github&logoColor=ffffff)](https://github.com/dmlc/dgl/blob/master/notebooks/stochastic_training/ondisk_dataset_homograph.ipynb)\n",
        "\n",
        "This tutorial shows how to create `OnDiskDataset` for homogeneous graph that could be used in **GraphBolt** framework.\n",
        "\n",
        "By the end of this tutorial, you will be able to\n",
28
        "\n",
29
30
        "- organize graph structure data.\n",
        "- organize feature data.\n",
31
32
33
34
35
        "- organize training/validation/test set for specific tasks.\n",
        "\n",
        "To create an ``OnDiskDataset`` object, you need to organize all the data including graph structure, feature data and tasks into a directory. The directory should contain a ``metadata.yaml`` file that describes the metadata of the dataset.\n",
        "\n",
        "Now let's generate various data step by step and organize them together to instantiate `OnDiskDataset` finally."
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
      ],
      "metadata": {
        "id": "FnFhPMaAfLtJ"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Install DGL package"
      ],
      "metadata": {
        "id": "Wlb19DtWgtzq"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Install required packages.\n",
        "import os\n",
        "import torch\n",
        "import numpy as np\n",
        "os.environ['TORCH'] = torch.__version__\n",
        "os.environ['DGLBACKEND'] = \"pytorch\"\n",
        "\n",
        "# Install the CPU version.\n",
        "device = torch.device(\"cpu\")\n",
        "!pip install --pre dgl -f https://data.dgl.ai/wheels-test/repo.html\n",
        "\n",
        "try:\n",
        "    import dgl\n",
        "    import dgl.graphbolt as gb\n",
        "    installed = True\n",
        "except ImportError as error:\n",
        "    installed = False\n",
        "    print(error)\n",
        "print(\"DGL installed!\" if installed else \"DGL not found!\")"
      ],
      "metadata": {
        "id": "UojlT9ZGgyr9"
      },
      "execution_count": null,
      "outputs": []
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Data preparation\n",
        "In order to demonstrate how to organize various data, let's create a base directory first."
      ],
      "metadata": {
        "id": "2R7WnSbjsfbr"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "base_dir = './ondisk_dataset_homograph'\n",
        "os.makedirs(base_dir, exist_ok=True)\n",
        "print(f\"Created base directory: {base_dir}\")"
      ],
      "metadata": {
        "id": "SZipbzyltLfO"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Generate graph structure data\n",
        "For homogeneous graph, we just need to save edges(namely node pairs) into **CSV** file.\n",
        "\n",
        "Note:\n",
109
        "when saving to file, do not save index and header.\n"
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
      ],
      "metadata": {
        "id": "qhNtIn_xhlnl"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import numpy as np\n",
        "import pandas as pd\n",
        "num_nodes = 1000\n",
        "num_edges = 10 * num_nodes\n",
        "edges_path = os.path.join(base_dir, \"edges.csv\")\n",
        "edges = np.random.randint(0, num_nodes, size=(num_edges, 2))\n",
        "\n",
125
        "print(f\"Part of edges: {edges[:5, :]}\")\n",
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        "\n",
        "df = pd.DataFrame(edges)\n",
        "df.to_csv(edges_path, index=False, header=False)\n",
        "\n",
        "print(f\"Edges are saved into {edges_path}\")"
      ],
      "metadata": {
        "id": "HcBt4G5BmSjr"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Generate feature data for graph\n",
        "For feature data, numpy arrays and torch tensors are supported for now."
      ],
      "metadata": {
        "id": "kh-4cPtzpcaH"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Generate node feature in numpy array.\n",
        "node_feat_0_path = os.path.join(base_dir, \"node-feat-0.npy\")\n",
        "node_feat_0 = np.random.rand(num_nodes, 5)\n",
154
        "print(f\"Part of node feature [feat_0]: {node_feat_0[:3, :]}\")\n",
155
        "np.save(node_feat_0_path, node_feat_0)\n",
156
        "print(f\"Node feature [feat_0] is saved to {node_feat_0_path}\\n\")\n",
157
158
159
160
        "\n",
        "# Generate another node feature in torch tensor\n",
        "node_feat_1_path = os.path.join(base_dir, \"node-feat-1.pt\")\n",
        "node_feat_1 = torch.rand(num_nodes, 5)\n",
161
        "print(f\"Part of node feature [feat_1]: {node_feat_1[:3, :]}\")\n",
162
        "torch.save(node_feat_1, node_feat_1_path)\n",
163
        "print(f\"Node feature [feat_1] is saved to {node_feat_1_path}\\n\")\n",
164
165
166
167
        "\n",
        "# Generate edge feature in numpy array.\n",
        "edge_feat_0_path = os.path.join(base_dir, \"edge-feat-0.npy\")\n",
        "edge_feat_0 = np.random.rand(num_edges, 5)\n",
168
        "print(f\"Part of edge feature [feat_0]: {edge_feat_0[:3, :]}\")\n",
169
        "np.save(edge_feat_0_path, edge_feat_0)\n",
170
        "print(f\"Edge feature [feat_0] is saved to {edge_feat_0_path}\\n\")\n",
171
172
173
174
        "\n",
        "# Generate another edge feature in torch tensor\n",
        "edge_feat_1_path = os.path.join(base_dir, \"edge-feat-1.pt\")\n",
        "edge_feat_1 = torch.rand(num_edges, 5)\n",
175
        "print(f\"Part of edge feature [feat_1]: {edge_feat_1[:3, :]}\")\n",
176
        "torch.save(edge_feat_1, edge_feat_1_path)\n",
177
        "print(f\"Edge feature [feat_1] is saved to {edge_feat_1_path}\\n\")\n"
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
      ],
      "metadata": {
        "id": "_PVu1u5brBhF"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Generate tasks\n",
        "`OnDiskDataset` supports multiple tasks. For each task, we need to prepare training/validation/test sets respectively. Such sets usually vary among different tasks. In this tutorial, let's create a **Node Classification** task and **Link Prediction** task."
      ],
      "metadata": {
        "id": "ZyqgOtsIwzh_"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "#### Node Classification Task\n",
        "For node classification task, we need **node IDs** and corresponding **labels** for each training/validation/test set. Like feature data, numpy arrays and torch tensors are supported for these sets."
      ],
      "metadata": {
        "id": "hVxHaDIfzCkr"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "num_trains = int(num_nodes * 0.6)\n",
        "num_vals = int(num_nodes * 0.2)\n",
        "num_tests = num_nodes - num_trains - num_vals\n",
        "\n",
        "ids = np.arange(num_nodes)\n",
        "np.random.shuffle(ids)\n",
        "\n",
        "nc_train_ids_path = os.path.join(base_dir, \"nc-train-ids.npy\")\n",
        "nc_train_ids = ids[:num_trains]\n",
217
        "print(f\"Part of train ids for node classification: {nc_train_ids[:3]}\")\n",
218
        "np.save(nc_train_ids_path, nc_train_ids)\n",
219
        "print(f\"NC train ids are saved to {nc_train_ids_path}\\n\")\n",
220
221
222
        "\n",
        "nc_train_labels_path = os.path.join(base_dir, \"nc-train-labels.pt\")\n",
        "nc_train_labels = torch.randint(0, 10, (num_trains,))\n",
223
        "print(f\"Part of train labels for node classification: {nc_train_labels[:3]}\")\n",
224
        "torch.save(nc_train_labels, nc_train_labels_path)\n",
225
        "print(f\"NC train labels are saved to {nc_train_labels_path}\\n\")\n",
226
227
228
        "\n",
        "nc_val_ids_path = os.path.join(base_dir, \"nc-val-ids.npy\")\n",
        "nc_val_ids = ids[num_trains:num_trains+num_vals]\n",
229
        "print(f\"Part of val ids for node classification: {nc_val_ids[:3]}\")\n",
230
        "np.save(nc_val_ids_path, nc_val_ids)\n",
231
        "print(f\"NC val ids are saved to {nc_val_ids_path}\\n\")\n",
232
233
234
        "\n",
        "nc_val_labels_path = os.path.join(base_dir, \"nc-val-labels.pt\")\n",
        "nc_val_labels = torch.randint(0, 10, (num_vals,))\n",
235
        "print(f\"Part of val labels for node classification: {nc_val_labels[:3]}\")\n",
236
        "torch.save(nc_val_labels, nc_val_labels_path)\n",
237
        "print(f\"NC val labels are saved to {nc_val_labels_path}\\n\")\n",
238
239
240
        "\n",
        "nc_test_ids_path = os.path.join(base_dir, \"nc-test-ids.npy\")\n",
        "nc_test_ids = ids[-num_tests:]\n",
241
        "print(f\"Part of test ids for node classification: {nc_test_ids[:3]}\")\n",
242
        "np.save(nc_test_ids_path, nc_test_ids)\n",
243
        "print(f\"NC test ids are saved to {nc_test_ids_path}\\n\")\n",
244
245
246
        "\n",
        "nc_test_labels_path = os.path.join(base_dir, \"nc-test-labels.pt\")\n",
        "nc_test_labels = torch.randint(0, 10, (num_tests,))\n",
247
        "print(f\"Part of test labels for node classification: {nc_test_labels[:3]}\")\n",
248
        "torch.save(nc_test_labels, nc_test_labels_path)\n",
249
        "print(f\"NC test labels are saved to {nc_test_labels_path}\\n\")"
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
      ],
      "metadata": {
        "id": "S5-fyBbHzTCO"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "#### Link Prediction Task\n",
        "For link prediction task, we need **node pairs** or **negative src/dsts** for each training/validation/test set. Like feature data, numpy arrays and torch tensors are supported for these sets."
      ],
      "metadata": {
        "id": "LhAcDCHQ_KJ0"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "num_trains = int(num_edges * 0.6)\n",
        "num_vals = int(num_edges * 0.2)\n",
        "num_tests = num_edges - num_trains - num_vals\n",
        "\n",
        "lp_train_node_pairs_path = os.path.join(base_dir, \"lp-train-node-pairs.npy\")\n",
        "lp_train_node_pairs = edges[:num_trains, :]\n",
276
        "print(f\"Part of train node pairs for link prediction: {lp_train_node_pairs[:3]}\")\n",
277
        "np.save(lp_train_node_pairs_path, lp_train_node_pairs)\n",
278
        "print(f\"LP train node pairs are saved to {lp_train_node_pairs_path}\\n\")\n",
279
280
281
        "\n",
        "lp_val_node_pairs_path = os.path.join(base_dir, \"lp-val-node-pairs.npy\")\n",
        "lp_val_node_pairs = edges[num_trains:num_trains+num_vals, :]\n",
282
        "print(f\"Part of val node pairs for link prediction: {lp_val_node_pairs[:3]}\")\n",
283
        "np.save(lp_val_node_pairs_path, lp_val_node_pairs)\n",
284
        "print(f\"LP val node pairs are saved to {lp_val_node_pairs_path}\\n\")\n",
285
286
287
        "\n",
        "lp_val_neg_dsts_path = os.path.join(base_dir, \"lp-val-neg-dsts.pt\")\n",
        "lp_val_neg_dsts = torch.randint(0, num_nodes, (num_vals, 10))\n",
288
        "print(f\"Part of val negative dsts for link prediction: {lp_val_neg_dsts[:3]}\")\n",
289
        "torch.save(lp_val_neg_dsts, lp_val_neg_dsts_path)\n",
290
        "print(f\"LP val negative dsts are saved to {lp_val_neg_dsts_path}\\n\")\n",
291
292
293
        "\n",
        "lp_test_node_pairs_path = os.path.join(base_dir, \"lp-test-node-pairs.npy\")\n",
        "lp_test_node_pairs = edges[-num_tests, :]\n",
294
        "print(f\"Part of test node pairs for link prediction: {lp_test_node_pairs[:3]}\")\n",
295
        "np.save(lp_test_node_pairs_path, lp_test_node_pairs)\n",
296
        "print(f\"LP test node pairs are saved to {lp_test_node_pairs_path}\\n\")\n",
297
298
299
        "\n",
        "lp_test_neg_dsts_path = os.path.join(base_dir, \"lp-test-neg-dsts.pt\")\n",
        "lp_test_neg_dsts = torch.randint(0, num_nodes, (num_tests, 10))\n",
300
        "print(f\"Part of test negative dsts for link prediction: {lp_test_neg_dsts[:3]}\")\n",
301
        "torch.save(lp_test_neg_dsts, lp_test_neg_dsts_path)\n",
302
        "print(f\"LP test negative dsts are saved to {lp_test_neg_dsts_path}\\n\")"
303
304
305
306
307
308
309
310
311
312
313
      ],
      "metadata": {
        "id": "u0jCnXIcAQy4"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Organize Data into YAML File\n",
314
315
316
317
318
319
320
321
        "Now we need to create a `metadata.yaml` file which contains the paths, dadta types of graph structure, feature data, training/validation/test sets.\n",
        "\n",
        "Notes:\n",
        "- all path should be relative to `metadata.yaml`.\n",
        "- Below fields are optional and not specified in below example.\n",
        "  - `in_memory`: indicates whether to load dada into memory or `mmap`. Default is `True`.\n",
        "\n",
        "Please refer to [YAML specification](https://github.com/dmlc/dgl/blob/master/docs/source/stochastic_training/ondisk-dataset-specification.rst) for more details."
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
      ],
      "metadata": {
        "id": "wbk6-wxRK-6S"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "yaml_content = f\"\"\"\n",
        "    dataset_name: homogeneous_graph_nc_lp\n",
        "    graph:\n",
        "      nodes:\n",
        "        - num: {num_nodes}\n",
        "      edges:\n",
        "        - format: csv\n",
        "          path: {os.path.basename(edges_path)}\n",
        "    feature_data:\n",
        "      - domain: node\n",
        "        name: feat_0\n",
        "        format: numpy\n",
        "        path: {os.path.basename(node_feat_0_path)}\n",
        "      - domain: node\n",
        "        name: feat_1\n",
        "        format: torch\n",
        "        path: {os.path.basename(node_feat_1_path)}\n",
        "      - domain: edge\n",
        "        name: feat_0\n",
        "        format: numpy\n",
        "        path: {os.path.basename(edge_feat_0_path)}\n",
        "      - domain: edge\n",
        "        name: feat_1\n",
        "        format: torch\n",
        "        path: {os.path.basename(edge_feat_1_path)}\n",
        "    tasks:\n",
        "      - name: node_classification\n",
        "        num_classes: 10\n",
        "        train_set:\n",
        "          - data:\n",
        "              - name: seed_nodes\n",
        "                format: numpy\n",
        "                path: {os.path.basename(nc_train_ids_path)}\n",
        "              - name: labels\n",
        "                format: torch\n",
        "                path: {os.path.basename(nc_train_labels_path)}\n",
        "        validation_set:\n",
        "          - data:\n",
        "              - name: seed_nodes\n",
        "                format: numpy\n",
        "                path: {os.path.basename(nc_val_ids_path)}\n",
        "              - name: labels\n",
        "                format: torch\n",
        "                path: {os.path.basename(nc_val_labels_path)}\n",
        "        test_set:\n",
        "          - data:\n",
        "              - name: seed_nodes\n",
        "                format: numpy\n",
        "                path: {os.path.basename(nc_test_ids_path)}\n",
        "              - name: labels\n",
        "                format: torch\n",
        "                path: {os.path.basename(nc_test_labels_path)}\n",
        "      - name: link_prediction\n",
        "        num_classes: 10\n",
        "        train_set:\n",
        "          - data:\n",
        "              - name: node_pairs\n",
        "                format: numpy\n",
        "                path: {os.path.basename(lp_train_node_pairs_path)}\n",
        "        validation_set:\n",
        "          - data:\n",
        "              - name: node_pairs\n",
        "                format: numpy\n",
        "                path: {os.path.basename(lp_val_node_pairs_path)}\n",
        "              - name: negative_dsts\n",
        "                format: torch\n",
        "                path: {os.path.basename(lp_val_neg_dsts_path)}\n",
        "        test_set:\n",
        "          - data:\n",
        "              - name: node_pairs\n",
        "                format: numpy\n",
        "                path: {os.path.basename(lp_test_node_pairs_path)}\n",
        "              - name: negative_dsts\n",
        "                format: torch\n",
        "                path: {os.path.basename(lp_test_neg_dsts_path)}\n",
        "\"\"\"\n",
        "metadata_path = os.path.join(base_dir, \"metadata.yaml\")\n",
        "with open(metadata_path, \"w\") as f:\n",
        "  f.write(yaml_content)"
      ],
      "metadata": {
        "id": "ddGTWW61Lpwp"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Instantiate `OnDiskDataset`\n",
        "Now we're ready to load dataset via `dgl.graphbolt.OnDiskDataset`. When instantiating, we just pass in the base directory where `metadata.yaml` file lies.\n",
        "\n",
        "During first instantiation, GraphBolt preprocesses the raw data such as constructing `FusedCSCSamplingGraph` from edges. All data including graph, feature data, training/validation/test sets are put into `preprocessed` directory after preprocessing. Any following dataset loading will skip the preprocess stage.\n",
        "\n",
        "After preprocessing, `load()` is required to be called explicitly in order to load graph, feature data and tasks."
      ],
      "metadata": {
        "id": "kEfybHGhOW7O"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "dataset = gb.OnDiskDataset(base_dir).load()\n",
        "graph = dataset.graph\n",
435
        "print(f\"Loaded graph: {graph}\\n\")\n",
436
437
        "\n",
        "feature = dataset.feature\n",
438
        "print(f\"Loaded feature store: {feature}\\n\")\n",
439
440
441
        "\n",
        "tasks = dataset.tasks\n",
        "nc_task = tasks[0]\n",
442
        "print(f\"Loaded node classification task: {nc_task}\\n\")\n",
443
        "lp_task = tasks[1]\n",
444
        "print(f\"Loaded link prediction task: {lp_task}\\n\")"
445
446
447
448
449
450
      ],
      "metadata": {
        "id": "W58CZoSzOiyo"
      },
      "execution_count": null,
      "outputs": []
451
452
    }
  ]
453
}