"mmdet3d/structures/bbox_3d/base_box3d.py" did not exist on "613c88443c1ba0462e5cca98784e9acba6e72bf3"
ondisk_dataset_heterograph.ipynb 18.5 KB
Newer Older
1
2
3
4
5
6
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "private_outputs": true,
7
      "provenance": []
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "# OnDiskDataset for Heterogeneous Graph\n",
        "\n",
        "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/dmlc/dgl/blob/master/notebooks/stochastic_training/ondisk_dataset_heterograph.ipynb) [![GitHub](https://img.shields.io/badge/-View%20on%20GitHub-181717?logo=github&logoColor=ffffff)](https://github.com/dmlc/dgl/blob/master/notebooks/stochastic_training/ondisk_dataset_heterograph.ipynb)\n",
        "\n",
        "This tutorial shows how to create `OnDiskDataset` for heterogeneous graph that could be used in **GraphBolt** framework.\n",
        "\n",
        "By the end of this tutorial, you will be able to\n",
        "- organize graph structure data.\n",
        "- organize feature data.\n",
30
31
32
33
34
        "- organize training/validation/test set for specific tasks.\n",
        "\n",
        "To create an ``OnDiskDataset`` object, you need to organize all the data including graph structure, feature data and tasks into a directory. The directory should contain a ``metadata.yaml`` file that describes the metadata of the dataset.\n",
        "\n",
        "Now let's generate various data step by step and organize them together to instantiate `OnDiskDataset` finally."
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
      ],
      "metadata": {
        "id": "FnFhPMaAfLtJ"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Install DGL package"
      ],
      "metadata": {
        "id": "Wlb19DtWgtzq"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Install required packages.\n",
        "import os\n",
        "import torch\n",
        "import numpy as np\n",
        "os.environ['TORCH'] = torch.__version__\n",
        "os.environ['DGLBACKEND'] = \"pytorch\"\n",
        "\n",
        "# Install the CPU version.\n",
        "device = torch.device(\"cpu\")\n",
        "!pip install --pre dgl -f https://data.dgl.ai/wheels-test/repo.html\n",
        "\n",
        "try:\n",
        "    import dgl\n",
        "    import dgl.graphbolt as gb\n",
        "    installed = True\n",
        "except ImportError as error:\n",
        "    installed = False\n",
        "    print(error)\n",
        "print(\"DGL installed!\" if installed else \"DGL not found!\")"
      ],
      "metadata": {
        "id": "UojlT9ZGgyr9"
      },
      "execution_count": null,
      "outputs": []
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Data preparation\n",
        "In order to demonstrate how to organize various data, let's create a base directory first."
      ],
      "metadata": {
        "id": "2R7WnSbjsfbr"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "base_dir = './ondisk_dataset_heterograph'\n",
        "os.makedirs(base_dir, exist_ok=True)\n",
        "print(f\"Created base directory: {base_dir}\")"
      ],
      "metadata": {
        "id": "SZipbzyltLfO"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Generate graph structure data\n",
        "For heterogeneous graph, we just need to save edges(namely node pairs) into **CSV** file.\n",
        "\n",
        "Note:\n",
        "when saving to file, do not save index and header.*italicized text*\n"
      ],
      "metadata": {
        "id": "qhNtIn_xhlnl"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import numpy as np\n",
        "import pandas as pd\n",
        "num_nodes = 1000\n",
        "num_edges = 10 * num_nodes\n",
        "edges_path = os.path.join(base_dir, \"edges.csv\")\n",
        "edges = np.random.randint(0, num_nodes, size=(num_edges, 2))\n",
        "\n",
        "print(f\"Part of edges: {edges[:10, :]}\")\n",
        "\n",
        "df = pd.DataFrame(edges)\n",
        "df.to_csv(edges_path, index=False, header=False)\n",
        "\n",
        "print(f\"Edges are saved into {edges_path}\")"
      ],
      "metadata": {
        "id": "HcBt4G5BmSjr"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Generate feature data for graph\n",
        "For feature data, numpy arrays and torch tensors are supported for now."
      ],
      "metadata": {
        "id": "kh-4cPtzpcaH"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Generate node feature in numpy array.\n",
        "node_feat_0_path = os.path.join(base_dir, \"node-feat-0.npy\")\n",
        "node_feat_0 = np.random.rand(num_nodes, 5)\n",
        "print(f\"Part of node feature [feat_0]: {node_feat_0[:10, :]}\")\n",
        "np.save(node_feat_0_path, node_feat_0)\n",
        "print(f\"Node feature [feat_0] is saved to {node_feat_0_path}\")\n",
        "\n",
        "# Generate another node feature in torch tensor\n",
        "node_feat_1_path = os.path.join(base_dir, \"node-feat-1.pt\")\n",
        "node_feat_1 = torch.rand(num_nodes, 5)\n",
        "print(f\"Part of node feature [feat_1]: {node_feat_1[:10, :]}\")\n",
        "torch.save(node_feat_1, node_feat_1_path)\n",
        "print(f\"Node feature [feat_1] is saved to {node_feat_1_path}\")\n",
        "\n",
        "# Generate edge feature in numpy array.\n",
        "edge_feat_0_path = os.path.join(base_dir, \"edge-feat-0.npy\")\n",
        "edge_feat_0 = np.random.rand(num_edges, 5)\n",
        "print(f\"Part of edge feature [feat_0]: {edge_feat_0[:10, :]}\")\n",
        "np.save(edge_feat_0_path, edge_feat_0)\n",
        "print(f\"Edge feature [feat_0] is saved to {edge_feat_0_path}\")\n",
        "\n",
        "# Generate another edge feature in torch tensor\n",
        "edge_feat_1_path = os.path.join(base_dir, \"edge-feat-1.pt\")\n",
        "edge_feat_1 = torch.rand(num_edges, 5)\n",
        "print(f\"Part of edge feature [feat_1]: {edge_feat_1[:10, :]}\")\n",
        "torch.save(edge_feat_1, edge_feat_1_path)\n",
        "print(f\"Edge feature [feat_1] is saved to {edge_feat_1_path}\")\n"
      ],
      "metadata": {
        "id": "_PVu1u5brBhF"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Generate tasks\n",
        "`OnDiskDataset` supports multiple tasks. For each task, we need to prepare training/validation/test sets respectively. Such sets usually vary among different tasks. In this tutorial, let's create a **Node Classification** task and **Link Prediction** task."
      ],
      "metadata": {
        "id": "ZyqgOtsIwzh_"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "#### Node Classification Task\n",
        "For node classification task, we need **node IDs** and corresponding **labels** for each training/validation/test set. Like feature data, numpy arrays and torch tensors are supported for these sets."
      ],
      "metadata": {
        "id": "hVxHaDIfzCkr"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "num_trains = int(num_nodes * 0.6)\n",
        "num_vals = int(num_nodes * 0.2)\n",
        "num_tests = num_nodes - num_trains - num_vals\n",
        "\n",
        "ids = np.arange(num_nodes)\n",
        "np.random.shuffle(ids)\n",
        "\n",
        "nc_train_ids_path = os.path.join(base_dir, \"nc-train-ids.npy\")\n",
        "nc_train_ids = ids[:num_trains]\n",
        "print(f\"Part of train ids for node classification: {nc_train_ids[:10]}\")\n",
        "np.save(nc_train_ids_path, nc_train_ids)\n",
        "print(f\"NC train ids are saved to {nc_train_ids_path}\")\n",
        "\n",
        "nc_train_labels_path = os.path.join(base_dir, \"nc-train-labels.pt\")\n",
        "nc_train_labels = torch.randint(0, 10, (num_trains,))\n",
        "print(f\"Part of train labels for node classification: {nc_train_labels[:10]}\")\n",
        "torch.save(nc_train_labels, nc_train_labels_path)\n",
        "print(f\"NC train labels are saved to {nc_train_labels_path}\")\n",
        "\n",
        "nc_val_ids_path = os.path.join(base_dir, \"nc-val-ids.npy\")\n",
        "nc_val_ids = ids[num_trains:num_trains+num_vals]\n",
        "print(f\"Part of val ids for node classification: {nc_val_ids[:10]}\")\n",
        "np.save(nc_val_ids_path, nc_val_ids)\n",
        "print(f\"NC val ids are saved to {nc_val_ids_path}\")\n",
        "\n",
        "nc_val_labels_path = os.path.join(base_dir, \"nc-val-labels.pt\")\n",
        "nc_val_labels = torch.randint(0, 10, (num_vals,))\n",
        "print(f\"Part of val labels for node classification: {nc_val_labels[:10]}\")\n",
        "torch.save(nc_val_labels, nc_val_labels_path)\n",
        "print(f\"NC val labels are saved to {nc_val_labels_path}\")\n",
        "\n",
        "nc_test_ids_path = os.path.join(base_dir, \"nc-test-ids.npy\")\n",
        "nc_test_ids = ids[-num_tests:]\n",
        "print(f\"Part of test ids for node classification: {nc_test_ids[:10]}\")\n",
        "np.save(nc_test_ids_path, nc_test_ids)\n",
        "print(f\"NC test ids are saved to {nc_test_ids_path}\")\n",
        "\n",
        "nc_test_labels_path = os.path.join(base_dir, \"nc-test-labels.pt\")\n",
        "nc_test_labels = torch.randint(0, 10, (num_tests,))\n",
        "print(f\"Part of test labels for node classification: {nc_test_labels[:10]}\")\n",
        "torch.save(nc_test_labels, nc_test_labels_path)\n",
        "print(f\"NC test labels are saved to {nc_test_labels_path}\")"
      ],
      "metadata": {
        "id": "S5-fyBbHzTCO"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "#### Link Prediction Task\n",
        "For link prediction task, we need **node pairs** or **negative src/dsts** for each training/validation/test set. Like feature data, numpy arrays and torch tensors are supported for these sets."
      ],
      "metadata": {
        "id": "LhAcDCHQ_KJ0"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "num_trains = int(num_edges * 0.6)\n",
        "num_vals = int(num_edges * 0.2)\n",
        "num_tests = num_edges - num_trains - num_vals\n",
        "\n",
        "lp_train_node_pairs_path = os.path.join(base_dir, \"lp-train-node-pairs.npy\")\n",
        "lp_train_node_pairs = edges[:num_trains, :]\n",
        "print(f\"Part of train node pairs for link prediction: {lp_train_node_pairs[:10]}\")\n",
        "np.save(lp_train_node_pairs_path, lp_train_node_pairs)\n",
        "print(f\"LP train node pairs are saved to {lp_train_node_pairs_path}\")\n",
        "\n",
        "lp_val_node_pairs_path = os.path.join(base_dir, \"lp-val-node-pairs.npy\")\n",
        "lp_val_node_pairs = edges[num_trains:num_trains+num_vals, :]\n",
        "print(f\"Part of val node pairs for link prediction: {lp_val_node_pairs[:10]}\")\n",
        "np.save(lp_val_node_pairs_path, lp_val_node_pairs)\n",
        "print(f\"LP val node pairs are saved to {lp_val_node_pairs_path}\")\n",
        "\n",
        "lp_val_neg_dsts_path = os.path.join(base_dir, \"lp-val-neg-dsts.pt\")\n",
        "lp_val_neg_dsts = torch.randint(0, num_nodes, (num_vals, 10))\n",
        "print(f\"Part of val negative dsts for link prediction: {lp_val_neg_dsts[:10]}\")\n",
        "torch.save(lp_val_neg_dsts, lp_val_neg_dsts_path)\n",
        "print(f\"LP val negative dsts are saved to {lp_val_neg_dsts_path}\")\n",
        "\n",
        "lp_test_node_pairs_path = os.path.join(base_dir, \"lp-test-node-pairs.npy\")\n",
        "lp_test_node_pairs = edges[-num_tests, :]\n",
        "print(f\"Part of test node pairs for link prediction: {lp_test_node_pairs[:10]}\")\n",
        "np.save(lp_test_node_pairs_path, lp_test_node_pairs)\n",
        "print(f\"LP test node pairs are saved to {lp_test_node_pairs_path}\")\n",
        "\n",
        "lp_test_neg_dsts_path = os.path.join(base_dir, \"lp-test-neg-dsts.pt\")\n",
        "lp_test_neg_dsts = torch.randint(0, num_nodes, (num_tests, 10))\n",
        "print(f\"Part of test negative dsts for link prediction: {lp_test_neg_dsts[:10]}\")\n",
        "torch.save(lp_test_neg_dsts, lp_test_neg_dsts_path)\n",
        "print(f\"LP test negative dsts are saved to {lp_test_neg_dsts_path}\")"
      ],
      "metadata": {
        "id": "u0jCnXIcAQy4"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Organize Data into YAML File\n",
        "Now we need to create a `metadata.yaml` file which contains the paths, dadta types of graph structure, feature data, training/validation/test sets. Please note that all path should be relative to `metadata.yaml`."
      ],
      "metadata": {
        "id": "wbk6-wxRK-6S"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "yaml_content = f\"\"\"\n",
        "    dataset_name: heterogeneous_graph_nc_lp\n",
        "    graph:\n",
        "      nodes:\n",
        "        - num: {num_nodes}\n",
        "      edges:\n",
        "        - format: csv\n",
        "          path: {os.path.basename(edges_path)}\n",
        "    feature_data:\n",
        "      - domain: node\n",
        "        name: feat_0\n",
        "        format: numpy\n",
        "        in_memory: true\n",
        "        path: {os.path.basename(node_feat_0_path)}\n",
        "      - domain: node\n",
        "        name: feat_1\n",
        "        format: torch\n",
        "        in_memory: true\n",
        "        path: {os.path.basename(node_feat_1_path)}\n",
        "      - domain: edge\n",
        "        name: feat_0\n",
        "        format: numpy\n",
        "        in_memory: true\n",
        "        path: {os.path.basename(edge_feat_0_path)}\n",
        "      - domain: edge\n",
        "        name: feat_1\n",
        "        format: torch\n",
        "        in_memory: true\n",
        "        path: {os.path.basename(edge_feat_1_path)}\n",
        "    tasks:\n",
        "      - name: node_classification\n",
        "        num_classes: 10\n",
        "        train_set:\n",
        "          - data:\n",
        "              - name: seed_nodes\n",
        "                format: numpy\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(nc_train_ids_path)}\n",
        "              - name: labels\n",
        "                format: torch\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(nc_train_labels_path)}\n",
        "        validation_set:\n",
        "          - data:\n",
        "              - name: seed_nodes\n",
        "                format: numpy\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(nc_val_ids_path)}\n",
        "              - name: labels\n",
        "                format: torch\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(nc_val_labels_path)}\n",
        "        test_set:\n",
        "          - data:\n",
        "              - name: seed_nodes\n",
        "                format: numpy\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(nc_test_ids_path)}\n",
        "              - name: labels\n",
        "                format: torch\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(nc_test_labels_path)}\n",
        "      - name: link_prediction\n",
        "        num_classes: 10\n",
        "        train_set:\n",
        "          - data:\n",
        "              - name: node_pairs\n",
        "                format: numpy\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(lp_train_node_pairs_path)}\n",
        "        validation_set:\n",
        "          - data:\n",
        "              - name: node_pairs\n",
        "                format: numpy\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(lp_val_node_pairs_path)}\n",
        "              - name: negative_dsts\n",
        "                format: torch\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(lp_val_neg_dsts_path)}\n",
        "        test_set:\n",
        "          - data:\n",
        "              - name: node_pairs\n",
        "                format: numpy\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(lp_test_node_pairs_path)}\n",
        "              - name: negative_dsts\n",
        "                format: torch\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(lp_test_neg_dsts_path)}\n",
        "\"\"\"\n",
        "metadata_path = os.path.join(base_dir, \"metadata.yaml\")\n",
        "with open(metadata_path, \"w\") as f:\n",
        "  f.write(yaml_content)"
      ],
      "metadata": {
        "id": "ddGTWW61Lpwp"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Instantiate `OnDiskDataset`\n",
        "Now we're ready to load dataset via `dgl.graphbolt.OnDiskDataset`. When instantiating, we just pass in the base directory where `metadata.yaml` file lies.\n",
        "\n",
        "During first instantiation, GraphBolt preprocesses the raw data such as constructing `FusedCSCSamplingGraph` from edges. All data including graph, feature data, training/validation/test sets are put into `preprocessed` directory after preprocessing. Any following dataset loading will skip the preprocess stage.\n",
        "\n",
        "After preprocessing, `load()` is required to be called explicitly in order to load graph, feature data and tasks."
      ],
      "metadata": {
        "id": "kEfybHGhOW7O"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "dataset = gb.OnDiskDataset(base_dir).load()\n",
        "graph = dataset.graph\n",
        "print(f\"Loaded graph: {graph}\")\n",
        "\n",
        "feature = dataset.feature\n",
        "print(f\"Loaded feature store: {feature}\")\n",
        "\n",
        "tasks = dataset.tasks\n",
        "nc_task = tasks[0]\n",
        "print(f\"Loaded node classification task: {nc_task}\")\n",
        "lp_task = tasks[1]\n",
        "print(f\"Loaded link prediction task: {lp_task}\")"
      ],
      "metadata": {
        "id": "W58CZoSzOiyo"
      },
      "execution_count": null,
      "outputs": []
458
459
460
    }
  ]
}