graph_op.cc 6.67 KB
Newer Older
1
2
3
4
5
/*!
 *  Copyright (c) 2018 by Contributors
 * \file graph/graph.cc
 * \brief Graph operation implementation
 */
Minjie Wang's avatar
Minjie Wang committed
6
#include <dgl/graph_op.h>
Minjie Wang's avatar
Minjie Wang committed
7
#include <algorithm>
Minjie Wang's avatar
Minjie Wang committed
8
9

namespace dgl {
10
11
12
13
14
15
namespace {
inline bool IsValidIdArray(const IdArray& arr) {
  return arr->ctx.device_type == kDLCPU && arr->ndim == 1
    && arr->dtype.code == kDLInt && arr->dtype.bits == 64;
}
}  // namespace
Minjie Wang's avatar
Minjie Wang committed
16

17
Graph GraphOp::LineGraph(const Graph* g, bool backtracking) {
GaiYu0's avatar
cpp lg  
GaiYu0 committed
18
  typedef std::pair<dgl_id_t, dgl_id_t> entry;
19
  typedef std::map<dgl_id_t, std::vector<entry>> csm;  // Compressed Sparse Matrix
GaiYu0's avatar
cpp lg  
GaiYu0 committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

  csm adj;
  std::vector<entry> vec;
  for (size_t i = 0; i != g->all_edges_src_.size(); ++i) {
    auto u = g->all_edges_src_[i];
    auto v = g->all_edges_dst_[i];
    auto ret = adj.insert(csm::value_type(u, vec));
    (ret.first)->second.push_back(std::make_pair(v, i));
  }

  std::vector<dgl_id_t> lg_src, lg_dst;
  for (size_t i = 0; i != g->all_edges_src_.size(); ++i) {
    auto u = g->all_edges_src_[i];
    auto v = g->all_edges_dst_[i];
    auto j = adj.find(v);
    if (j != adj.end()) {
      for (size_t k = 0; k != j->second.size(); ++k) {
GaiYu0's avatar
GaiYu0 committed
37
        if (backtracking || (!backtracking && j->second[k].first != u)) {
GaiYu0's avatar
cpp lg  
GaiYu0 committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
          lg_src.push_back(i);
          lg_dst.push_back(j->second[k].second);
        }
      }
    }
  }

  const int64_t len = lg_src.size();
  IdArray src = IdArray::Empty({len}, DLDataType{kDLInt, 64, 1}, DLContext{kDLCPU, 0});
  IdArray dst = IdArray::Empty({len}, DLDataType{kDLInt, 64, 1}, DLContext{kDLCPU, 0});
  int64_t* src_ptr = static_cast<int64_t*>(src->data);
  int64_t* dst_ptr = static_cast<int64_t*>(dst->data);
  std::copy(lg_src.begin(), lg_src.end(), src_ptr);
  std::copy(lg_dst.begin(), lg_dst.end(), dst_ptr);

  Graph lg;
  lg.AddVertices(g->NumEdges());
  lg.AddEdges(src, dst);
  return lg;
}

Minjie Wang's avatar
Minjie Wang committed
59
60
61
62
63
64
65
66
67
68
69
70
71
Graph GraphOp::DisjointUnion(std::vector<const Graph*> graphs) {
  Graph rst;
  uint64_t cumsum = 0;
  for (const Graph* gr : graphs) {
    rst.AddVertices(gr->NumVertices());
    for (uint64_t i = 0; i < gr->NumEdges(); ++i) {
      rst.AddEdge(gr->all_edges_src_[i] + cumsum, gr->all_edges_dst_[i] + cumsum);
    }
    cumsum += gr->NumVertices();
  }
  return rst;
}

Minjie Wang's avatar
Minjie Wang committed
72
73
74
75
76
77
78
79
std::vector<Graph> GraphOp::DisjointPartitionByNum(const Graph* graph, int64_t num) {
  CHECK(num != 0 && graph->NumVertices() % num == 0)
    << "Number of partitions must evenly divide the number of nodes.";
  IdArray sizes = IdArray::Empty({num}, DLDataType{kDLInt, 64, 1}, DLContext{kDLCPU, 0});
  int64_t* sizes_data = static_cast<int64_t*>(sizes->data);
  std::fill(sizes_data, sizes_data + num, graph->NumVertices() / num);
  return DisjointPartitionBySizes(graph, sizes);
}
80

Minjie Wang's avatar
Minjie Wang committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
std::vector<Graph> GraphOp::DisjointPartitionBySizes(const Graph* graph, IdArray sizes) {
  const int64_t len = sizes->shape[0];
  const int64_t* sizes_data = static_cast<int64_t*>(sizes->data);
  std::vector<int64_t> cumsum;
  cumsum.push_back(0);
  for (int64_t i = 0; i < len; ++i) {
    cumsum.push_back(cumsum[i] + sizes_data[i]);
  }
  CHECK_EQ(cumsum[len], graph->NumVertices())
    << "Sum of the given sizes must equal to the number of nodes.";
  dgl_id_t node_offset = 0, edge_offset = 0;
  std::vector<Graph> rst(len);
  for (int64_t i = 0; i < len; ++i) {
    // copy adj
    rst[i].adjlist_.insert(rst[i].adjlist_.end(),
        graph->adjlist_.begin() + node_offset,
        graph->adjlist_.begin() + node_offset + sizes_data[i]);
    rst[i].reverse_adjlist_.insert(rst[i].reverse_adjlist_.end(),
        graph->reverse_adjlist_.begin() + node_offset,
        graph->reverse_adjlist_.begin() + node_offset + sizes_data[i]);
    // relabel adjs
    size_t num_edges = 0;
    for (auto& elist : rst[i].adjlist_) {
      for (size_t j = 0; j < elist.succ.size(); ++j) {
        elist.succ[j] -= node_offset;
        elist.edge_id[j] -= edge_offset;
      }
      num_edges += elist.succ.size();
    }
    for (auto& elist : rst[i].reverse_adjlist_) {
      for (size_t j = 0; j < elist.succ.size(); ++j) {
        elist.succ[j] -= node_offset;
        elist.edge_id[j] -= edge_offset;
      }
    }
    // copy edges
    rst[i].all_edges_src_.reserve(num_edges);
    rst[i].all_edges_dst_.reserve(num_edges);
    rst[i].num_edges_ = num_edges;
    for (size_t j = edge_offset; j < edge_offset + num_edges; ++j) {
      rst[i].all_edges_src_.push_back(graph->all_edges_src_[j] - node_offset);
      rst[i].all_edges_dst_.push_back(graph->all_edges_dst_[j] - node_offset);
    }
    // update offset
    CHECK_EQ(rst[i].NumVertices(), sizes_data[i]);
    CHECK_EQ(rst[i].NumEdges(), num_edges);
    node_offset += sizes_data[i];
    edge_offset += num_edges;
  }
  return rst;
}

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
IdArray GraphOp::MapParentIdToSubgraphId(IdArray parent_vids, IdArray query) {
  CHECK(IsValidIdArray(parent_vids)) << "Invalid parent id array.";
  CHECK(IsValidIdArray(query)) << "Invalid query id array.";
  const auto parent_len = parent_vids->shape[0];
  const auto query_len = query->shape[0];
  const dgl_id_t* parent_data = static_cast<dgl_id_t*>(parent_vids->data);
  const dgl_id_t* query_data = static_cast<dgl_id_t*>(query->data);
  IdArray rst = IdArray::Empty({query_len}, DLDataType{kDLInt, 64, 1}, DLContext{kDLCPU, 0});
  dgl_id_t* rst_data = static_cast<dgl_id_t*>(rst->data);

  const bool is_sorted = std::is_sorted(parent_data, parent_data + parent_len);
  if (is_sorted) {
    for (int64_t i = 0; i < query_len; i++) {
      const dgl_id_t id = query_data[i];
      const auto it = std::find(parent_data, parent_data + parent_len, id);
      CHECK(it != parent_data + parent_len) << id << " doesn't exist in the parent Ids";
      rst_data[i] = it - parent_data;
    }
  } else {
    std::unordered_map<dgl_id_t, dgl_id_t> parent_map;
    for (int64_t i = 0; i < parent_len; i++) {
      const dgl_id_t id = parent_data[i];
      parent_map[id] = i;
    }
    for (int64_t i = 0; i < query_len; i++) {
      const dgl_id_t id = query_data[i];
      auto it = parent_map.find(id);
      CHECK(it != parent_map.end()) << id << " doesn't exist in the parent Ids";
      rst_data[i] = it->second;
    }
  }
  return rst;
}

IdArray GraphOp::ExpandIds(IdArray ids, IdArray offset) {
  const auto id_len = ids->shape[0];
  const auto off_len = offset->shape[0];
  CHECK_EQ(id_len + 1, off_len);
  const dgl_id_t *id_data = static_cast<dgl_id_t*>(ids->data);
  const dgl_id_t *off_data = static_cast<dgl_id_t*>(offset->data);
  const int64_t len = off_data[off_len - 1];
  IdArray rst = IdArray::Empty({len}, DLDataType{kDLInt, 64, 1}, DLContext{kDLCPU, 0});
  dgl_id_t *rst_data = static_cast<dgl_id_t*>(rst->data);
  for (int64_t i = 0; i < id_len; i++) {
    const int64_t local_len = off_data[i + 1] - off_data[i];
    for (int64_t j = 0; j < local_len; j++) {
      rst_data[off_data[i] + j] = id_data[i];
    }
  }
  return rst;
}

Minjie Wang's avatar
Minjie Wang committed
185
}  // namespace dgl