train.py 5.05 KB
Newer Older
1
2
3
4
5
import argparse
import time
import numpy as np
import networkx as nx
import tensorflow as tf
6
7
8
import dgl
from dgl.data import register_data_args
from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset
9
10
11
12
13
14
15
16
17
18
19
20
21
22
from gcn import GCN


def evaluate(model, features, labels, mask):
    logits = model(features, training=False)
    logits = logits[mask]
    labels = labels[mask]
    indices = tf.math.argmax(logits, axis=1)
    acc = tf.reduce_mean(tf.cast(indices == labels, dtype=tf.float32))
    return acc.numpy().item()


def main(args):
    # load and preprocess dataset
23
24
25
26
27
28
29
30
    if args.dataset == 'cora':
        data = CoraGraphDataset()
    elif args.dataset == 'citeseer':
        data = CiteseerGraphDataset()
    elif args.dataset == 'pubmed':
        data = PubmedGraphDataset()
    else:
        raise ValueError('Unknown dataset: {}'.format(args.dataset))
31

32
    g = data[0]
33
34
35
36
    if args.gpu < 0:
        device = "/cpu:0"
    else:
        device = "/gpu:{}".format(args.gpu)
37
        g = g.to(device)
38
39

    with tf.device(device):
40
41
42
43
44
        features = g.ndata['feat']
        labels = g.ndata['label']
        train_mask = g.ndata['train_mask']
        val_mask = g.ndata['val_mask']
        test_mask = g.ndata['test_mask']
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        in_feats = features.shape[1]
        n_classes = data.num_labels
        n_edges = data.graph.number_of_edges()
        print("""----Data statistics------'
        #Edges %d
        #Classes %d
        #Train samples %d
        #Val samples %d
        #Test samples %d""" %
              (n_edges, n_classes,
               train_mask.numpy().sum(),
               val_mask.numpy().sum(),
               test_mask.numpy().sum()))

59
        # add self loop
60
        if args.self_loop:
61
62
            g = dgl.remove_self_loop(g)
            g = dgl.add_self_loop(g)
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        n_edges = g.number_of_edges()
        # normalization
        degs = tf.cast(tf.identity(g.in_degrees()), dtype=tf.float32)
        norm = tf.math.pow(degs, -0.5)
        norm = tf.where(tf.math.is_inf(norm), tf.zeros_like(norm), norm)

        g.ndata['norm'] = tf.expand_dims(norm, -1)

        # create GCN model
        model = GCN(g,
                    in_feats,
                    args.n_hidden,
                    n_classes,
                    args.n_layers,
                    tf.nn.relu,
                    args.dropout)

        loss_fcn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True)
        # use optimizer
        optimizer = tf.keras.optimizers.Adam(
            learning_rate=args.lr, epsilon=1e-8)

        # initialize graph
        dur = []
        for epoch in range(args.n_epochs):
            if epoch >= 3:
                t0 = time.time()
            # forward
            with tf.GradientTape() as tape:
                logits = model(features)
                loss_value = loss_fcn(labels[train_mask], logits[train_mask])
                # Manually Weight Decay
96
                # We found Tensorflow has a different implementation on weight decay
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
                # of Adam(W) optimizer with PyTorch. And this results in worse results.
                # Manually adding weights to the loss to do weight decay solves this problem.
                for weight in model.trainable_weights:
                    loss_value = loss_value + \
                        args.weight_decay*tf.nn.l2_loss(weight)

                grads = tape.gradient(loss_value, model.trainable_weights)
                optimizer.apply_gradients(zip(grads, model.trainable_weights))
            if epoch >= 3:
                dur.append(time.time() - t0)

            acc = evaluate(model, features, labels, val_mask)
            print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
                  "ETputs(KTEPS) {:.2f}". format(epoch, np.mean(dur), loss_value.numpy().item(),
                                                 acc, n_edges / np.mean(dur) / 1000))

        acc = evaluate(model, features, labels, test_mask)
        print("Test Accuracy {:.4f}".format(acc))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0.5,
                        help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
                        help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
                        help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=200,
                        help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=16,
                        help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
                        help="number of hidden gcn layers")
    parser.add_argument("--weight-decay", type=float, default=5e-4,
                        help="Weight for L2 loss")
    parser.add_argument("--self-loop", action='store_true',
                        help="graph self-loop (default=False)")
    parser.set_defaults(self_loop=False)
    args = parser.parse_args()
    print(args)

    main(args)