README.md 1.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Graph Attention Networks (GAT)
============

- Paper link: [https://arxiv.org/abs/1710.10903](https://arxiv.org/abs/1710.10903)
- Author's code repo (in Tensorflow):
  [https://github.com/PetarV-/GAT](https://github.com/PetarV-/GAT).
- Popular pytorch implementation:
  [https://github.com/Diego999/pyGAT](https://github.com/Diego999/pyGAT).

Dependencies
------------
- tensorflow 2.1.0+
- requests

```bash
pip install tensorflow requests
17
DGLBACKEND=tensorflow
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
```

How to run
----------

Run with following:

```bash
python3 train.py --dataset=cora --gpu=0
```

```bash
python3 train.py --dataset=citeseer --gpu=0 --early-stop
```

```bash
python3 train.py --dataset=pubmed --gpu=0 --num-out-heads=8 --weight-decay=0.001 --early-stop
```


Results
-------

| Dataset  | Test Accuracy | Baseline (paper) |
| -------- | ------------- | ---------------- |
| Cora     | 84.2          | 83.0(+-0.7)      |
| Citeseer | 70.9          | 72.5(+-0.7)      |
| Pubmed   | 78.5          | 79.0(+-0.3)      |

* All the accuracy numbers are obtained after 200 epochs.
* All time is measured on EC2 p3.2xlarge instance w/ V100 GPU.