main.py 22.2 KB
Newer Older
Ereboas's avatar
Ereboas committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import argparse
import datetime
import os
import sys
import time

import dgl
import torch
from dgl.data.utils import load_graphs, save_graphs
from dgl.dataloading import GraphDataLoader
from ogb.linkproppred import DglLinkPropPredDataset, Evaluator
from torch.nn import BCEWithLogitsLoss
from torch.utils.data import Dataset
from tqdm import tqdm

from models import *
from utils import *


class SEALOGBLDataset(Dataset):
    def __init__(
        self,
        root,
        graph,
        split_edge,
        percent=100,
        split="train",
        ratio_per_hop=1.0,
        directed=False,
        dynamic=True,
    ) -> None:
        super().__init__()
        self.root = root
        self.graph = graph
        self.split = split
        self.split_edge = split_edge
        self.percent = percent
        self.ratio_per_hop = ratio_per_hop
        self.directed = directed
        self.dynamic = dynamic

        if "weights" in self.graph.edata:
            self.edge_weights = self.graph.edata["weights"]
        else:
            self.edge_weights = None
        if "feat" in self.graph.ndata:
            self.node_features = self.graph.ndata["feat"]
        else:
            self.node_features = None

51
52
53
54
55
        if not self.dynamic:
            self.g_list, tensor_dict = self.load_cached()
            self.labels = tensor_dict["y"]
            return

Ereboas's avatar
Ereboas committed
56
57
58
        pos_edge, neg_edge = get_pos_neg_edges(
            split, self.split_edge, self.graph, self.percent
        )
59
60
        self.links = torch.cat([pos_edge, neg_edge], 0)  # [Np + Nn, 2]
        self.labels = np.array([1] * len(pos_edge) + [0] * len(neg_edge))
Ereboas's avatar
Ereboas committed
61
62
63
64
65
66
67
68
69
70
71

    def __len__(self):
        return len(self.labels)

    def __getitem__(self, idx):
        if not self.dynamic:
            g, y = self.g_list[idx], self.labels[idx]
            x = None if "x" not in g.ndata else g.ndata["x"]
            w = None if "w" not in g.edata else g.eata["w"]
            return g, g.ndata["z"], x, w, y

72
        src, dst = self.links[idx][0].item(), self.links[idx][1].item()
Ereboas's avatar
Ereboas committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        y = self.labels[idx]
        subg = k_hop_subgraph(
            src, dst, 1, self.graph, self.ratio_per_hop, self.directed
        )

        # Remove the link between src and dst.
        direct_links = [[], []]
        for s, t in [(0, 1), (1, 0)]:
            if subg.has_edges_between(s, t):
                direct_links[0].append(s)
                direct_links[1].append(t)
        if len(direct_links[0]):
            subg.remove_edges(subg.edge_ids(*direct_links))

        NIDs, EIDs = subg.ndata[dgl.NID], subg.edata[dgl.EID]

        z = drnl_node_labeling(subg.adj(scipy_fmt="csr"), 0, 1)
        edge_weights = (
            self.edge_weights[EIDs] if self.edge_weights is not None else None
        )
        x = self.node_features[NIDs] if self.node_features is not None else None

        subg_aug = subg.add_self_loop()
        if edge_weights is not None:
            edge_weights = torch.cat(
                [
                    edge_weights,
                    torch.ones(subg_aug.num_edges() - subg.num_edges()),
                ]
            )
        return subg_aug, z, x, edge_weights, y

    @property
    def cached_name(self):
        return f"SEAL_{self.split}_{self.percent}%.pt"

    def process(self):
        g_list, labels = [], []
        self.dynamic = True
        for i in tqdm(range(len(self))):
            g, z, x, weights, y = self[i]
            g.ndata["z"] = z
            if x is not None:
                g.ndata["x"] = x
            if weights is not None:
                g.edata["w"] = weights
            g_list.append(g)
            labels.append(y)
        self.dynamic = False
        return g_list, {"y": torch.tensor(labels)}

    def load_cached(self):
        path = os.path.join(self.root, self.cached_name)
        if os.path.exists(path):
            return load_graphs(path)

        if not os.path.exists(self.root):
            os.makedirs(self.root)

        pos_edge, neg_edge = get_pos_neg_edges(
            self.split, self.split_edge, self.graph, self.percent
        )
135
136
        self.links = torch.cat([pos_edge, neg_edge], 0)  # [Np + Nn, 2]
        self.labels = np.array([1] * len(pos_edge) + [0] * len(neg_edge))
Ereboas's avatar
Ereboas committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

        g_list, labels = self.process()
        save_graphs(path, g_list, labels)
        return g_list, labels


def ogbl_collate_fn(batch):
    gs, zs, xs, ws, ys = zip(*batch)
    batched_g = dgl.batch(gs)
    z = torch.cat(zs, dim=0)
    if xs[0] is not None:
        x = torch.cat(xs, dim=0)
    else:
        x = None
    if ws[0] is not None:
        edge_weights = torch.cat(ws, dim=0)
    else:
        edge_weights = None
    y = torch.tensor(ys)

    return batched_g, z, x, edge_weights, y


def train():
    model.train()
    loss_fnt = BCEWithLogitsLoss()
    total_loss = 0
    pbar = tqdm(train_loader, ncols=70)
    for batch in pbar:
        g, z, x, edge_weights, y = [
            item.to(device) if item is not None else None for item in batch
        ]
        optimizer.zero_grad()
        logits = model(g, z, x, edge_weight=edge_weights)
        loss = loss_fnt(logits.view(-1), y.to(torch.float))
        loss.backward()
        optimizer.step()
        total_loss += loss.item() * g.batch_size

    return total_loss / len(train_dataset)


@torch.no_grad()
def test(dataloader, hits_K=["hits@100"]):
    model.eval()

    if isinstance(hits_K, (int, str)):
        hits_K = [hits_K]
    y_pred, y_true = [], []
    for batch in tqdm(dataloader, ncols=70):
        g, z, x, edge_weights, y = [
            item.to(device) if item is not None else None for item in batch
        ]
        logits = model(g, z, x, edge_weight=edge_weights)
        y_pred.append(logits.view(-1).cpu())
        y_true.append(y.view(-1).cpu().to(torch.float))
    y_pred, y_true = torch.cat(y_pred), torch.cat(y_true)
    pos_y_pred = y_pred[y_true == 1]
    neg_y_pred = y_pred[y_true == 0]

    if dataset.eval_metric.startswith("hits@"):
        results = evaluate_hits(pos_y_pred, neg_y_pred, hits_K)
    elif dataset.eval_metric == "mrr":
        results = evaluate_mrr(pos_y_pred, neg_y_pred)
    elif dataset.eval_metric == "rocauc":
        results = evaluate_rocauc(pos_y_pred, neg_y_pred)

    return results


def evaluate_hits(y_pred_pos, y_pred_neg, hits_K):
    results = {}
    hits_K = map(
        lambda x: (int(x.split("@")[1]) if isinstance(x, str) else x), hits_K
    )
    for K in hits_K:
        evaluator.K = K
        hits = evaluator.eval(
            {
                "y_pred_pos": y_pred_pos,
                "y_pred_neg": y_pred_neg,
            }
        )[f"hits@{K}"]

        results[f"hits@{K}"] = hits

    return results


def evaluate_mrr(y_pred_pos, y_pred_neg):
    y_pred_neg = y_pred_neg.view(y_pred_pos.shape[0], -1)
    results = {}
    mrr = (
        evaluator.eval(
            {
                "y_pred_pos": y_pred_pos,
                "y_pred_neg": y_pred_neg,
            }
        )["mrr_list"]
        .mean()
        .item()
    )

    results["mrr"] = mrr

    return results


def evaluate_rocauc(y_pred_pos, y_pred_neg):
    results = {}
    rocauc = evaluator.eval(
        {
            "y_pred_pos": y_pred_pos,
            "y_pred_neg": y_pred_neg,
        }
    )["rocauc"]

    results["rocauc"] = rocauc

    return results


def print_log(*x, sep="\n", end="\n", mode="a"):
    print(*x, sep=sep, end=end)
    with open(log_file, mode=mode) as f:
        print(*x, sep=sep, end=end, file=f)


if __name__ == "__main__":
    # Data settings
    parser = argparse.ArgumentParser(description="OGBL (SEAL)")
    parser.add_argument("--dataset", type=str, default="ogbl-vessel")
    # GNN settings
    parser.add_argument(
        "--max_z",
        type=int,
        default=1000,
        help="max number of labels as embeddings to look up",
    )
    parser.add_argument("--sortpool_k", type=float, default=0.6)
    parser.add_argument("--num_layers", type=int, default=3)
    parser.add_argument("--hidden_channels", type=int, default=32)
    parser.add_argument("--batch_size", type=int, default=32)
    parser.add_argument(
        "--ngnn_type",
        type=str,
        default="none",
        choices=["none", "input", "hidden", "output", "all"],
        help="You can set this value from 'none', 'input', 'hidden' or 'all' " \
             "to apply NGNN to different GNN layers.",
    )
288
289
290
    parser.add_argument(
        "--num_ngnn_layers", type=int, default=1, choices=[1, 2]
    )
Ereboas's avatar
Ereboas committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    # Subgraph extraction settings
    parser.add_argument("--ratio_per_hop", type=float, default=1.0)
    parser.add_argument(
        "--use_feature",
        action="store_true",
        help="whether to use raw node features as GNN input",
    )
    parser.add_argument(
        "--use_edge_weight",
        action="store_true",
        help="whether to consider edge weight in GNN",
    )
    # Training settings
    parser.add_argument(
        "--device",
        type=int,
        default=0,
        help="GPU device ID. Use -1 for CPU training.",
    )
    parser.add_argument("--lr", type=float, default=0.001)
    parser.add_argument("--epochs", type=int, default=5)
    parser.add_argument("--dropout", type=float, default=0.0)
    parser.add_argument("--runs", type=int, default=10)
    parser.add_argument("--train_percent", type=float, default=1)
    parser.add_argument("--val_percent", type=float, default=1)
316
317
    parser.add_argument("--final_val_percent", type=float, default=100)
    parser.add_argument("--test_percent", type=float, default=100)
Ereboas's avatar
Ereboas committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
    parser.add_argument("--no_test", action="store_true")
    parser.add_argument(
        "--dynamic_train",
        action="store_true",
        help="dynamically extract enclosing subgraphs on the fly",
    )
    parser.add_argument("--dynamic_val", action="store_true")
    parser.add_argument("--dynamic_test", action="store_true")
    parser.add_argument(
        "--num_workers",
        type=int,
        default=24,
        help="number of workers for dynamic dataloaders; " \
             "using a larger value for dynamic dataloading is recommended",
    )
    # Testing settings
    parser.add_argument(
        "--use_valedges_as_input",
        action="store_true",
        help="available for ogbl-collab",
    )
    parser.add_argument("--eval_steps", type=int, default=1)
    parser.add_argument(
        "--eval_hits_K",
        type=int,
        nargs="*",
        default=[10],
        help="hits@K for each eval step; " \
             "only available for datasets with hits@xx as the eval metric",
    )
    parser.add_argument(
        "--test_topk",
        type=int,
        default=1,
        help="select best k models for full validation/test each run.",
    )
    args = parser.parse_args()

    data_appendix = "_rph{}".format("".join(str(args.ratio_per_hop).split(".")))
    if args.use_valedges_as_input:
        data_appendix += "_uvai"

    args.res_dir = os.path.join(
        f'results{"_NoTest" if args.no_test else ""}',
        f'{args.dataset.split("-")[1]}-{args.ngnn_type}+{time.strftime("%m%d%H%M%S")}'
    )
    print(f"Results will be saved in {args.res_dir}")
    if not os.path.exists(args.res_dir):
        os.makedirs(args.res_dir)
    log_file = os.path.join(args.res_dir, "log.txt")
    # Save command line input.
    cmd_input = "python " + " ".join(sys.argv) + "\n"
    with open(os.path.join(args.res_dir, "cmd_input.txt"), "a") as f:
        f.write(cmd_input)
    print(f"Command line input is saved.")
    print_log(f"{cmd_input}")

    dataset = DglLinkPropPredDataset(name=args.dataset)
    split_edge = dataset.get_edge_split()
    graph = dataset[0]

    # Re-format the data of ogbl-citation2.
    if args.dataset == "ogbl-citation2":
        for k in ["train", "valid", "test"]:
            src = split_edge[k]["source_node"]
            tgt = split_edge[k]["target_node"]
            split_edge[k]["edge"] = torch.stack([src, tgt], dim=1)
            if k != "train":
                tgt_neg = split_edge[k]["target_node_neg"]
                split_edge[k]["edge_neg"] = torch.stack(
                    [src[:, None].repeat(1, tgt_neg.size(1)), tgt_neg], dim=-1
                )  # [Ns, Nt, 2]

    # Reconstruct the graph for ogbl-collab data 
    # for validation edge augmentation and coalesce.
    if args.dataset == "ogbl-collab":
        # Float edata for to_simple transformation.
        graph.edata.pop("year")
        graph.edata["weight"] = graph.edata["weight"].to(torch.float)
        if args.use_valedges_as_input:
            val_edges = split_edge["valid"]["edge"]
            row, col = val_edges.t()
            val_weights = torch.ones(size=(val_edges.size(0), 1))
            graph.add_edges(
                torch.cat([row, col]),
                torch.cat([col, row]),
                {"weight": val_weights},
            )
        graph = graph.to_simple(copy_edata=True, aggregator="sum")

    if args.dataset == "ogbl-vessel":
        graph.ndata["feat"][:, 0] = torch.nn.functional.normalize(
            graph.ndata["feat"][:, 0], dim=0
        )
        graph.ndata["feat"][:, 1] = torch.nn.functional.normalize(
            graph.ndata["feat"][:, 1], dim=0
        )
        graph.ndata["feat"][:, 2] = torch.nn.functional.normalize(
            graph.ndata["feat"][:, 2], dim=0
        )
        graph.ndata["feat"] = graph.ndata["feat"].to(torch.float)

    if not args.use_edge_weight and "weight" in graph.edata:
        del graph.edata["weight"]
    if not args.use_feature and "feat" in graph.ndata:
        del graph.ndata["feat"]

    directed = args.dataset.startswith("ogbl-citation")

    evaluator = Evaluator(name=args.dataset)
    if dataset.eval_metric.startswith("hits@"):
        loggers = {
            f"hits@{k}": Logger(args.runs, args) for k in args.eval_hits_K
        }
    elif dataset.eval_metric == "mrr":
        loggers = {
            "mrr": Logger(args.runs, args),
        }
    elif dataset.eval_metric == "rocauc":
        loggers = {
            "rocauc": Logger(args.runs, args),
        }

    device = (
        f"cuda:{args.device}"
        if args.device != -1 and torch.cuda.is_available()
        else "cpu"
    )
    device = torch.device(device)
    path = f"{dataset.root}_seal{data_appendix}"

    if not (args.dynamic_train or args.dynamic_val or args.dynamic_test):
        args.num_workers = 0

    train_dataset, val_dataset, final_val_dataset, test_dataset = [
        SEALOGBLDataset(
            path,
            graph,
            split_edge,
            percent=percent,
            split=split,
            ratio_per_hop=args.ratio_per_hop,
            directed=directed,
            dynamic=dynamic,
        )
        for percent, split, dynamic in zip(
            [
                args.train_percent,
                args.val_percent,
                args.final_val_percent,
                args.test_percent,
            ],
            ["train", "valid", "valid", "test"],
            [
                args.dynamic_train,
                args.dynamic_val,
                args.dynamic_test,
                args.dynamic_test,
            ],
        )
    ]

    train_loader = GraphDataLoader(
        train_dataset,
        batch_size=args.batch_size,
        shuffle=True,
        collate_fn=ogbl_collate_fn,
        num_workers=args.num_workers,
    )
    val_loader = GraphDataLoader(
        val_dataset,
        batch_size=args.batch_size,
        shuffle=False,
        collate_fn=ogbl_collate_fn,
        num_workers=args.num_workers,
    )
    final_val_loader = GraphDataLoader(
        final_val_dataset,
        batch_size=args.batch_size,
        shuffle=False,
        collate_fn=ogbl_collate_fn,
        num_workers=args.num_workers,
    )
    test_loader = GraphDataLoader(
        test_dataset,
        batch_size=args.batch_size,
        shuffle=False,
        collate_fn=ogbl_collate_fn,
        num_workers=args.num_workers,
    )

    if 0 < args.sortpool_k <= 1:  # Transform percentile to number.
510
511
512
513
        if args.dataset.startswith("ogbl-citation"):
            _sampled_indices = list(range(1000)) + list(
                range(len(train_dataset) - 1000, len(train_dataset))
            )
Ereboas's avatar
Ereboas committed
514
        else:
515
            _sampled_indices = list(range(1000))
Ereboas's avatar
Ereboas committed
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
        _num_nodes = sorted(
            [train_dataset[i][0].num_nodes() for i in _sampled_indices]
        )
        _k = _num_nodes[int(math.ceil(args.sortpool_k * len(_num_nodes))) - 1]
        model_k = max(10, _k)
    else:
        raise argparse.ArgumentTypeError("sortpool_k must be in range (0, 1].")

    print_log(f"training starts: {datetime.datetime.now()}")

    for run in range(args.runs):
        stime = datetime.datetime.now()
        print_log(f"\n++++++\n\nstart run [{run+1}], {stime}")

        model = DGCNN(
            args.hidden_channels,
            args.num_layers,
            args.max_z,
            model_k,
            feature_dim=graph.ndata["feat"].size(1)
            if (args.use_feature and "feat" in graph.ndata)
            else 0,
            dropout=args.dropout,
            ngnn_type=args.ngnn_type,
540
            num_ngnn_layers=args.num_ngnn_layers,
Ereboas's avatar
Ereboas committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
        ).to(device)
        parameters = list(model.parameters())
        optimizer = torch.optim.Adam(params=parameters, lr=args.lr)
        total_params = sum(p.numel() for param in parameters for p in param)
        print_log(
            f"Total number of parameters is {total_params}",
            f"SortPooling k is set to {model.k}",
        )

        start_epoch = 1
        # Training starts.
        for epoch in range(start_epoch, start_epoch + args.epochs):
            epo_stime = datetime.datetime.now()
            loss = train()
            epo_train_etime = datetime.datetime.now()
            print_log(
                f"[epoch: {epoch}]",
                f"   <Train> starts: {epo_stime}, " \
                f"ends: {epo_train_etime}, " \
                f"spent time:{epo_train_etime - epo_stime}"
            )
            if epoch % args.eval_steps == 0:
                epo_eval_stime = datetime.datetime.now()
                results = test(val_loader, loggers.keys())
                epo_eval_etime = datetime.datetime.now()
                print_log(
                    f"   <Validation> starts: {epo_eval_stime}, " \
                    f"ends: {epo_eval_etime}, " \
                    f"spent time:{epo_eval_etime - epo_eval_stime}"
                )
                for key, valid_res in results.items():
                    loggers[key].add_result(run, valid_res)
                    to_print = (
                        f"Run: {run + 1:02d}, " \
                        f"Epoch: {epoch:02d}, " \
                        f"Loss: {loss:.4f}, " \
                        f"Valid ({args.val_percent}%) [{key}]: {valid_res:.4f}"
                    )
                    print_log(key, to_print)

                model_name = os.path.join(
                    args.res_dir, f"run{run+1}_model_checkpoint{epoch}.pth"
                )
                optimizer_name = os.path.join(
                    args.res_dir, f"run{run+1}_optimizer_checkpoint{epoch}.pth"
                )
                torch.save(model.state_dict(), model_name)
                torch.save(optimizer.state_dict(), optimizer_name)

        print_log()
        tested = dict()
        for eval_metric in loggers.keys():
            # Select models according to the eval_metric of the dataset.
            res = torch.tensor(
                loggers[eval_metric].results["valid"][run]
            )
            if args.no_test:
                epoch = torch.argmax(res).item() + 1
                val_res = loggers[eval_metric].results["valid"][run][epoch - 1]
                loggers[eval_metric].add_result(run, (epoch, val_res), "test")
                print_log(
                    f"No Test; Best Valid:",
                    f"   Run: {run + 1:02d}, " \
                    f"Epoch: {epoch:02d}, " \
                    f"Valid ({args.val_percent}%) [{eval_metric}]: {val_res:.4f}",
                )
                continue

            idx_to_test = (
                torch.topk(res, args.test_topk, largest=True).indices + 1
            ).tolist()  # indices of top k valid results
            print_log(
                f"Eval Metric: {eval_metric}",
                f"Run: {run + 1:02d}, " \
                f"Top {args.test_topk} Eval Points: {idx_to_test}",
            )
            for _idx, epoch in enumerate(idx_to_test):
                print_log(
                    f"Test Point[{_idx+1}]: " \
                    f"Epoch {epoch:02d}, " \
                    f"Test Metric: {dataset.eval_metric}"
                )
                if epoch not in tested:
                    model_name = os.path.join(
                        args.res_dir, f"run{run+1}_model_checkpoint{epoch}.pth"
                    )
                    optimizer_name = os.path.join(
                        args.res_dir,
                        f"run{run+1}_optimizer_checkpoint{epoch}.pth",
                    )
                    model.load_state_dict(torch.load(model_name))
                    optimizer.load_state_dict(torch.load(optimizer_name))
                    tested[epoch] = (
                        test(final_val_loader, dataset.eval_metric)[
                            dataset.eval_metric
                        ],
                        test(test_loader, dataset.eval_metric)[
                            dataset.eval_metric
                        ],
                    )

                val_res, test_res = tested[epoch]
                loggers[eval_metric].add_result(
                    run, (epoch, val_res, test_res), "test"
                )
                print_log(
                    f"   Run: {run + 1:02d}, " \
                    f"Epoch: {epoch:02d}, " \
                    f"Valid ({args.val_percent}%) [{eval_metric}]: " \
                    f"{loggers[eval_metric].results['valid'][run][epoch-1]:.4f}, " \
                    f"Valid (final) [{dataset.eval_metric}]: {val_res:.4f}, " \
                    f"Test [{dataset.eval_metric}]: {test_res:.4f}"
                )

        etime = datetime.datetime.now()
        print_log(
            f"end run [{run}], {etime}",
            f"spent time:{etime-stime}",
        )

    for key in loggers.keys():
        print(f"\n{key}")
        loggers[key].print_statistics()
        with open(log_file, "a") as f:
            print(f"\n{key}", file=f)
            loggers[key].print_statistics(f=f)
    print(f"Total number of parameters is {total_params}")
    print(f"Results are saved in {args.res_dir}")