".github/vscode:/vscode.git/clone" did not exist on "b79c7e452862e6948ed064fd32f78f58377eca9a"
deepwalk.py 12.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
import argparse
import dgl
import torch.multiprocessing as mp
from torch.utils.data import DataLoader
import os
import random
import time
import numpy as np

from reading_data import DeepwalkDataset
from model import SkipGramModel
from utils import thread_wrapped_func, shuffle_walks

class DeepwalkTrainer:
    def __init__(self, args):
        """ Initializing the trainer with the input arguments """
        self.args = args
        self.dataset = DeepwalkDataset(
            net_file=args.data_file,
            map_file=args.map_file,
            walk_length=args.walk_length,
            window_size=args.window_size,
            num_walks=args.num_walks,
            batch_size=args.batch_size,
            negative=args.negative,
            gpus=args.gpus,
            fast_neg=args.fast_neg,
            )
        self.emb_size = len(self.dataset.net)
        self.emb_model = None

    def init_device_emb(self):
        """ set the device before training 
        will be called once in fast_train_mp / fast_train
        """
        choices = sum([self.args.only_gpu, self.args.only_cpu, self.args.mix])
        assert choices == 1, "Must choose only *one* training mode in [only_cpu, only_gpu, mix]"
        choices = sum([self.args.sgd, self.args.adam, self.args.avg_sgd])
        assert choices == 1, "Must choose only *one* gradient descent strategy in [sgd, avg_sgd, adam]"
        
        # initializing embedding on CPU
        self.emb_model = SkipGramModel(
            emb_size=self.emb_size, 
            emb_dimension=self.args.dim,
            walk_length=self.args.walk_length,
            window_size=self.args.window_size,
            batch_size=self.args.batch_size,
            only_cpu=self.args.only_cpu,
            only_gpu=self.args.only_gpu,
            mix=self.args.mix,
            neg_weight=self.args.neg_weight,
            negative=self.args.negative,
            lr=self.args.lr,
            lap_norm=self.args.lap_norm,
            adam=self.args.adam,
            sgd=self.args.sgd,
            avg_sgd=self.args.avg_sgd,
            fast_neg=self.args.fast_neg,
            record_loss=self.args.print_loss,
61
62
            norm=self.args.norm,
            use_context_weight=self.args.use_context_weight,
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
            )
        
        torch.set_num_threads(self.args.num_threads)
        if self.args.only_gpu:
            print("Run in 1 GPU")
            assert self.args.gpus[0] >= 0
            self.emb_model.all_to_device(self.args.gpus[0])
        elif self.args.mix:
            print("Mix CPU with %d GPU" % len(self.args.gpus))
            if len(self.args.gpus) == 1:
                assert self.args.gpus[0] >= 0, 'mix CPU with GPU should have abaliable GPU'
                self.emb_model.set_device(self.args.gpus[0])
        else:
            print("Run in CPU process")
            self.args.gpus = [torch.device('cpu')]


    def train(self):
        """ train the embedding """
        if len(self.args.gpus) > 1:
            self.fast_train_mp()
        else:
            self.fast_train()

    def fast_train_mp(self):
        """ multi-cpu-core or mix cpu & multi-gpu """
        self.init_device_emb()
        self.emb_model.share_memory()

        start_all = time.time()
        ps = []

        for i in range(len(self.args.gpus)):
            p = mp.Process(target=self.fast_train_sp, args=(self.args.gpus[i],))
            ps.append(p)
            p.start()

        for p in ps:
            p.join()
        
        print("Used time: %.2fs" % (time.time()-start_all))
        if self.args.save_in_txt:
            self.emb_model.save_embedding_txt(self.dataset, self.args.output_emb_file)
        elif self.args.save_in_pt:
            self.emb_model.save_embedding_pt(self.dataset, self.args.output_emb_file)
        else:
            self.emb_model.save_embedding(self.dataset, self.args.output_emb_file)

    @thread_wrapped_func
    def fast_train_sp(self, gpu_id):
        """ a subprocess for fast_train_mp """
        if self.args.mix:
            self.emb_model.set_device(gpu_id)
        torch.set_num_threads(self.args.num_threads)

        sampler = self.dataset.create_sampler(gpu_id)

        dataloader = DataLoader(
            dataset=sampler.seeds,
            batch_size=self.args.batch_size,
            collate_fn=sampler.sample,
            shuffle=False,
            drop_last=False,
            num_workers=4,
            )
        num_batches = len(dataloader)
        print("num batchs: %d in subprocess [%d]" % (num_batches, gpu_id))
        # number of positive node pairs in a sequence
        num_pos = int(2 * self.args.walk_length * self.args.window_size\
            - self.args.window_size * (self.args.window_size + 1))
        
        start = time.time()
        with torch.no_grad():
            max_i = self.args.iterations * num_batches
            
            for i, walks in enumerate(dataloader):
                # decay learning rate for SGD
                lr = self.args.lr * (max_i - i) / max_i
                if lr < 0.00001:
                    lr = 0.00001

                if self.args.fast_neg:
                    self.emb_model.fast_learn(walks, lr)
                else:
                    # do negative sampling
                    bs = len(walks)
                    neg_nodes = torch.LongTensor(
                        np.random.choice(self.dataset.neg_table, 
                            bs * num_pos * self.args.negative, 
                            replace=True))
                    self.emb_model.fast_learn(walks, lr, neg_nodes=neg_nodes)

                if i > 0 and i % self.args.print_interval == 0:
                    if self.args.print_loss:
                        print("Solver [%d] batch %d tt: %.2fs loss: %.4f" \
158
                            % (gpu_id, i, time.time()-start, -sum(self.emb_model.loss)/self.args.print_interval))
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
                        self.emb_model.loss = []
                    else:
                        print("Solver [%d] batch %d tt: %.2fs" % (gpu_id, i, time.time()-start))
                    start = time.time()

    def fast_train(self):
        """ fast train with dataloader """
        # the number of postive node pairs of a node sequence
        num_pos = 2 * self.args.walk_length * self.args.window_size\
            - self.args.window_size * (self.args.window_size + 1)
        num_pos = int(num_pos)

        self.init_device_emb()

        sampler = self.dataset.create_sampler(0)

        dataloader = DataLoader(
            dataset=sampler.seeds,
            batch_size=self.args.batch_size,
            collate_fn=sampler.sample,
            shuffle=False,
            drop_last=False,
            num_workers=4,
            )
        
        num_batches = len(dataloader)
        print("num batchs: %d" % num_batches)

        start_all = time.time()
        start = time.time()
        with torch.no_grad():
            max_i = self.args.iterations * num_batches
            for iteration in range(self.args.iterations):
                print("\nIteration: " + str(iteration + 1))
                
                for i, walks in enumerate(dataloader):
                    # decay learning rate for SGD
                    lr = self.args.lr * (max_i - i) / max_i
                    if lr < 0.00001:
                        lr = 0.00001

                    if self.args.fast_neg:
                        self.emb_model.fast_learn(walks, lr)
                    else:
                        # do negative sampling
                        bs = len(walks)
                        neg_nodes = torch.LongTensor(
                            np.random.choice(self.dataset.neg_table, 
                                bs * num_pos * self.args.negative, 
                                replace=True))
                        self.emb_model.fast_learn(walks, lr, neg_nodes=neg_nodes)

                    if i > 0 and i % self.args.print_interval == 0:
                        if self.args.print_loss:
                            print("Batch %d training time: %.2fs loss: %.4f" \
214
                                % (i, time.time()-start, -sum(self.emb_model.loss)/self.args.print_interval))
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
                            self.emb_model.loss = []
                        else:
                            print("Batch %d, training time: %.2fs" % (i, time.time()-start))
                        start = time.time()

        print("Training used time: %.2fs" % (time.time()-start_all))
        if self.args.save_in_txt:
            self.emb_model.save_embedding_txt(self.dataset, self.args.output_emb_file)
        elif self.args.save_in_pt:
            self.emb_model.save_embedding_pt(self.dataset, self.args.output_emb_file)
        else:
            self.emb_model.save_embedding(self.dataset, self.args.output_emb_file)

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description="DeepWalk")
    parser.add_argument('--data_file', type=str, 
            help="path of the txt network file, builtin dataset include youtube-net and blog-net") 
    parser.add_argument('--save_in_txt', default=False, action="store_true",
            help='Whether save dat in txt format or npy')
    parser.add_argument('--save_in_pt', default=False, action="store_true",
            help='Whether save dat in pt format or npy')
    parser.add_argument('--output_emb_file', type=str, default="emb.npy",
            help='path of the output npy embedding file')
    parser.add_argument('--map_file', type=str, default="nodeid_to_index.pickle",
            help='path of the mapping dict that maps node ids to embedding index')
    parser.add_argument('--dim', default=128, type=int, 
            help="embedding dimensions")
    parser.add_argument('--window_size', default=5, type=int, 
            help="context window size")
    parser.add_argument('--num_walks', default=10, type=int, 
            help="number of walks for each node")
    parser.add_argument('--negative', default=5, type=int, 
            help="negative samples for each positve node pair")
    parser.add_argument('--iterations', default=1, type=int, 
            help="iterations")
    parser.add_argument('--batch_size', default=10, type=int, 
            help="number of node sequences in each batch")
    parser.add_argument('--print_interval', default=100, type=int, 
            help="number of batches between printing")
    parser.add_argument('--print_loss', default=False, action="store_true", 
            help="whether print loss during training")
    parser.add_argument('--walk_length', default=80, type=int, 
            help="number of nodes in a sequence")
    parser.add_argument('--lr', default=0.2, type=float, 
            help="learning rate")
    parser.add_argument('--neg_weight', default=1., type=float, 
            help="negative weight")
    parser.add_argument('--lap_norm', default=0.01, type=float, 
            help="weight of laplacian normalization")
    parser.add_argument('--mix', default=False, action="store_true", 
            help="mixed training with CPU and GPU")
    parser.add_argument('--only_cpu', default=False, action="store_true", 
            help="training with CPU")
    parser.add_argument('--only_gpu', default=False, action="store_true", 
            help="training with GPU")
    parser.add_argument('--fast_neg', default=True, action="store_true", 
            help="do negative sampling inside a batch")
    parser.add_argument('--adam', default=False, action="store_true", 
            help="use adam for embedding updation, recommended")
    parser.add_argument('--sgd', default=False, action="store_true", 
            help="use sgd for embedding updation")
    parser.add_argument('--avg_sgd', default=False, action="store_true", 
            help="average gradients of sgd for embedding updation")
278
279
280
281
    parser.add_argument('--norm', default=False, action="store_true", 
            help="whether to do normalization over node embedding after training")
    parser.add_argument('--use_context_weight', default=False, action="store_true", 
            help="whether to add weights over nodes in the context window")
282
283
284
285
286
287
288
289
290
291
    parser.add_argument('--num_threads', default=2, type=int, 
            help="number of threads used for each CPU-core/GPU")
    parser.add_argument('--gpus', type=int, default=[-1], nargs='+', 
            help='a list of active gpu ids, e.g. 0')
    args = parser.parse_args()

    start_time = time.time()
    trainer = DeepwalkTrainer(args)
    trainer.train()
    print("Total used time: %.2f" % (time.time() - start_time))