modules.py 3.94 KB
Newer Older
lt610's avatar
lt610 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch.nn as nn
import torch.nn.functional as F
import torch as th
import dgl.function as fn


class GCNLayer(nn.Module):
    def __init__(self, in_dim, out_dim, order=1, act=None,
                 dropout=0, batch_norm=False, aggr="concat"):
        super(GCNLayer, self).__init__()
        self.lins = nn.ModuleList()
        self.bias = nn.ParameterList()
        for _ in range(order + 1):
            self.lins.append(nn.Linear(in_dim, out_dim, bias=False))
            self.bias.append(nn.Parameter(th.zeros(out_dim)))

        self.order = order
        self.act = act
        self.dropout = nn.Dropout(dropout)

        self.batch_norm = batch_norm
        if batch_norm:
            self.offset, self.scale = nn.ParameterList(), nn.ParameterList()
            for _ in range(order + 1):
                self.offset.append(nn.Parameter(th.zeros(out_dim)))
                self.scale.append(nn.Parameter(th.ones(out_dim)))

        self.aggr = aggr
        self.reset_parameters()

    def reset_parameters(self):
        for lin in self.lins:
            nn.init.xavier_normal_(lin.weight)

K's avatar
K committed
35
    def feat_trans(self, features, idx):  # linear transformation + activation + batch normalization
lt610's avatar
lt610 committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
        h = self.lins[idx](features) + self.bias[idx]

        if self.act is not None:
            h = self.act(h)

        if self.batch_norm:
            mean = h.mean(dim=1).view(h.shape[0], 1)
            var = h.var(dim=1, unbiased=False).view(h.shape[0], 1) + 1e-9
            h = (h - mean) * self.scale[idx] * th.rsqrt(var) + self.offset[idx]

        return h

    def forward(self, graph, features):
        g = graph.local_var()
        h_in = self.dropout(features)
        h_hop = [h_in]

        D_norm = g.ndata['train_D_norm'] if 'train_D_norm' in g.ndata else g.ndata['full_D_norm']
K's avatar
K committed
54
        for _ in range(self.order):  # forward propagation
lt610's avatar
lt610 committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
            g.ndata['h'] = h_hop[-1]
            if 'w' not in g.edata:
                g.edata['w'] = th.ones((g.num_edges(), )).to(features.device)
            g.update_all(fn.u_mul_e('h', 'w', 'm'),
                         fn.sum('m', 'h'))
            h = g.ndata.pop('h')
            h = h * D_norm
            h_hop.append(h)

        h_part = [self.feat_trans(ft, idx) for idx, ft in enumerate(h_hop)]
        if self.aggr == "mean":
            h_out = h_part[0]
            for i in range(len(h_part) - 1):
                h_out = h_out + h_part[i + 1]
        elif self.aggr == "concat":
            h_out = th.cat(h_part, 1)
        else:
            raise NotImplementedError

        return h_out


class GCNNet(nn.Module):
    def __init__(self, in_dim, hid_dim, out_dim, arch="1-1-0",
                 act=F.relu, dropout=0, batch_norm=False, aggr="concat"):
        super(GCNNet, self).__init__()
        self.gcn = nn.ModuleList()

        orders = list(map(int, arch.split('-')))
        self.gcn.append(GCNLayer(in_dim=in_dim, out_dim=hid_dim, order=orders[0],
                                 act=act, dropout=dropout, batch_norm=batch_norm, aggr=aggr))
        pre_out = ((aggr == "concat") * orders[0] + 1) * hid_dim

        for i in range(1, len(orders)-1):
            self.gcn.append(GCNLayer(in_dim=pre_out, out_dim=hid_dim, order=orders[i],
                                     act=act, dropout=dropout, batch_norm=batch_norm, aggr=aggr))
            pre_out = ((aggr == "concat") * orders[i] + 1) * hid_dim

        self.gcn.append(GCNLayer(in_dim=pre_out, out_dim=hid_dim, order=orders[-1],
                                 act=act, dropout=dropout, batch_norm=batch_norm, aggr=aggr))
        pre_out = ((aggr == "concat") * orders[-1] + 1) * hid_dim

        self.out_layer = GCNLayer(in_dim=pre_out, out_dim=out_dim, order=0,
                                  act=None, dropout=dropout, batch_norm=False, aggr=aggr)

    def forward(self, graph):
        h = graph.ndata['feat']

        for layer in self.gcn:
            h = layer(graph, h)

        h = F.normalize(h, p=2, dim=1)
        h = self.out_layer(graph, h)

        return h