"docs/tutorial_simple_lstm.rst" did not exist on "0e101e9c55140b915ea7fd17eeed29461e6c4bc7"
entity_classify.py 8.54 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Code: https://github.com/tkipf/relational-gcn

Difference compared to tkipf/relation-gcn
* l2norm applied to all weights
* remove nodes that won't be touched
"""

import argparse
import numpy as np
import time
import tensorflow as tf
from tensorflow.keras import layers
16
import dgl
17
18
from dgl.nn.tensorflow import RelGraphConv
from functools import partial
19
from dgl.data.rdf import AIFBDataset, MUTAGDataset, BGSDataset, AMDataset
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

from model import BaseRGCN

class EntityClassify(BaseRGCN):
    def create_features(self):
        features = tf.range(self.num_nodes)
        return features

    def build_input_layer(self):
        return RelGraphConv(self.num_nodes, self.h_dim, self.num_rels, "basis",
                self.num_bases, activation=tf.nn.relu, self_loop=self.use_self_loop,
                dropout=self.dropout)

    def build_hidden_layer(self, idx):
        return RelGraphConv(self.h_dim, self.h_dim, self.num_rels, "basis",
                self.num_bases, activation=tf.nn.relu, self_loop=self.use_self_loop,
                dropout=self.dropout)

    def build_output_layer(self):
        return RelGraphConv(self.h_dim, self.out_dim, self.num_rels, "basis",
                self.num_bases, activation=partial(tf.nn.softmax, axis=1),
                self_loop=self.use_self_loop)

def acc(logits, labels, mask):
    logits = tf.gather(logits, mask)
    labels = tf.gather(labels, mask)
    indices = tf.math.argmax(logits, axis=1)
    acc = tf.reduce_mean(tf.cast(indices == labels, dtype=tf.float32))
    return acc

def main(args):
    # load graph data
52
53
54
55
56
57
58
59
    if args.dataset == 'aifb':
        dataset = AIFBDataset()
    elif args.dataset == 'mutag':
        dataset = MUTAGDataset()
    elif args.dataset == 'bgs':
        dataset = BGSDataset()
    elif args.dataset == 'am':
        dataset = AMDataset()
60
    else:
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        raise ValueError()

    # preprocessing in cpu
    with tf.device("/cpu:0"):
        # Load from hetero-graph
        hg = dataset[0]

        num_rels = len(hg.canonical_etypes)
        num_of_ntype = len(hg.ntypes)
        category = dataset.predict_category
        num_classes = dataset.num_classes
        train_mask = hg.nodes[category].data.pop('train_mask')
        test_mask = hg.nodes[category].data.pop('test_mask')
        train_idx = tf.squeeze(tf.where(train_mask))
        test_idx = tf.squeeze(tf.where(test_mask))
        labels = hg.nodes[category].data.pop('labels')

        # split dataset into train, validate, test
        if args.validation:
            val_idx = train_idx[:len(train_idx) // 5]
            train_idx = train_idx[len(train_idx) // 5:]
        else:
            val_idx = train_idx

        # calculate norm for each edge type and store in edge
        for canonical_etype in hg.canonical_etypes:
            u, v, eid = hg.all_edges(form='all', etype=canonical_etype)
            _, inverse_index, count = tf.unique_with_counts(v)
            degrees = tf.gather(count, inverse_index)
            norm = tf.ones(eid.shape[0]) / tf.cast(degrees, tf.float32)
            norm = tf.expand_dims(norm, 1)
            hg.edges[canonical_etype].data['norm'] = norm

        # get target category id
        category_id = len(hg.ntypes)
        for i, ntype in enumerate(hg.ntypes):
            if ntype == category:
                category_id = i

        # edge type and normalization factor
        g = dgl.to_homo(hg)
102
103
104
105
106
107
108

    # check cuda
    if args.gpu < 0:
        device = "/cpu:0"
        use_cuda = False
    else:
        device = "/gpu:{}".format(args.gpu)
109
        g = g.to(device)
110
        use_cuda = True
111
112
113
114
    num_nodes = g.number_of_nodes()
    node_ids = tf.range(num_nodes, dtype=tf.int64)
    edge_norm = g.edata['norm']
    edge_type = tf.cast(g.edata[dgl.ETYPE], tf.int64)
115

116
117
118
119
    # find out the target node ids in g
    node_tids = g.ndata[dgl.NTYPE]
    loc = (node_tids == category_id)
    target_idx = tf.squeeze(tf.where(loc))
120

121
122
123
124
    # since the nodes are featureless, the input feature is then the node id.
    feats = tf.range(num_nodes, dtype=tf.int64)

    with tf.device(device):
125
        # create model
126
127
128
129
130
131
132
133
134
        model = EntityClassify(num_nodes,
                               args.n_hidden,
                               num_classes,
                               num_rels,
                               num_bases=args.n_bases,
                               num_hidden_layers=args.n_layers - 2,
                               dropout=args.dropout,
                               use_self_loop=args.use_self_loop,
                               use_cuda=use_cuda)
135
136
137
138
139
140
141
142
143
144
145
146
147
148

        # optimizer
        optimizer = tf.keras.optimizers.Adam(
                    learning_rate=args.lr)
        # training loop
        print("start training...")
        forward_time = []
        backward_time = []
        loss_fcn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=False)
        for epoch in range(args.n_epochs):
            t0 = time.time()
            with tf.GradientTape() as tape:
                logits = model(g, feats, edge_type, edge_norm)
149
                logits = tf.gather(logits, target_idx)
150
151
                loss = loss_fcn(tf.gather(labels, train_idx), tf.gather(logits, train_idx))
                # Manually Weight Decay
152
                # We found Tensorflow has a different implementation on weight decay
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
                # of Adam(W) optimizer with PyTorch. And this results in worse results.
                # Manually adding weights to the loss to do weight decay solves this problem.
                for weight in model.trainable_weights:
                    loss = loss + \
                        args.l2norm * tf.nn.l2_loss(weight)
                t1 = time.time()
                grads = tape.gradient(loss, model.trainable_weights)
                optimizer.apply_gradients(zip(grads, model.trainable_weights))
                t2 = time.time()

            forward_time.append(t1 - t0)
            backward_time.append(t2 - t1)
            print("Epoch {:05d} | Train Forward Time(s) {:.4f} | Backward Time(s) {:.4f}".
                format(epoch, forward_time[-1], backward_time[-1]))
            train_acc = acc(logits, labels, train_idx)
            val_loss = loss_fcn(tf.gather(labels, val_idx), tf.gather(logits, val_idx))
            val_acc = acc(logits, labels, val_idx)
            print("Train Accuracy: {:.4f} | Train Loss: {:.4f} | Validation Accuracy: {:.4f} | Validation loss: {:.4f}".
                format(train_acc, loss.numpy().item(), val_acc, val_loss.numpy().item()))
        print()

        logits = model(g, feats, edge_type, edge_norm)
175
        logits = tf.gather(logits, target_idx)
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
        test_loss = loss_fcn(tf.gather(labels, test_idx), tf.gather(logits, test_idx))
        test_acc = acc(logits, labels, test_idx)
        print("Test Accuracy: {:.4f} | Test loss: {:.4f}".format(test_acc, test_loss.numpy().item()))
        print()

        print("Mean forward time: {:4f}".format(np.mean(forward_time[len(forward_time) // 4:])))
        print("Mean backward time: {:4f}".format(np.mean(backward_time[len(backward_time) // 4:])))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='RGCN')
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden units")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
    parser.add_argument("--n-bases", type=int, default=-1,
            help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-layers", type=int, default=2,
            help="number of propagation rounds")
    parser.add_argument("-e", "--n-epochs", type=int, default=50,
            help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
            help="dataset to use")
    parser.add_argument("--l2norm", type=float, default=0,
            help="l2 norm coef")
    parser.add_argument("--use-self-loop", default=False, action='store_true',
            help="include self feature as a special relation")
    fp = parser.add_mutually_exclusive_group(required=False)
    fp.add_argument('--validation', dest='validation', action='store_true')
    fp.add_argument('--testing', dest='validation', action='store_false')
    parser.set_defaults(validation=True)

    args = parser.parse_args()
    print(args)
    args.bfs_level = args.n_layers + 1 # pruning used nodes for memory
    main(args)