translation_train.py 6.47 KB
Newer Older
Zihao Ye's avatar
Zihao Ye committed
1
from modules import *
2
from loss import *
Zihao Ye's avatar
Zihao Ye committed
3
4
5
from optims import *
from dataset import *
from modules.config import *
6
#from modules.viz import *
Zihao Ye's avatar
Zihao Ye committed
7
8
import numpy as np
import argparse
9
10
11
import torch
from functools import partial
import torch.distributed as dist
Zihao Ye's avatar
Zihao Ye committed
12

13
def run_epoch(epoch, data_iter, dev_rank, ndev, model, loss_compute, is_train=True):
Zihao Ye's avatar
Zihao Ye committed
14
    universal = isinstance(model, UTransformer)
15
16
17
    with loss_compute:
        for i, g in enumerate(data_iter):
            with T.set_grad_enabled(is_train):
Zihao Ye's avatar
Zihao Ye committed
18
19
20
21
22
23
24
                if universal:
                    output, loss_act = model(g)
                    if is_train: loss_act.backward(retain_graph=True)
                else:
                    output = model(g)
                tgt_y = g.tgt_y
                n_tokens = g.n_tokens
25
                loss = loss_compute(output, tgt_y, n_tokens)
Zihao Ye's avatar
Zihao Ye committed
26
27
28
29
30

    if universal:
        for step in range(1, model.MAX_DEPTH + 1):
            print("nodes entering step {}: {:.2f}%".format(step, (1.0 * model.stat[step] / model.stat[0])))
        model.reset_stat()
31
32
33
    print('Epoch {} {}: Dev {} average loss: {}, accuracy {}'.format(
        epoch, "Training" if is_train else "Evaluating",
        dev_rank, loss_compute.avg_loss, loss_compute.accuracy))
Zihao Ye's avatar
Zihao Ye committed
34

35
36
37
38
39
40
41
42
43
44
45
def run(dev_id, args):
    dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
        master_ip=args.master_ip, master_port=args.master_port)
    world_size = args.ngpu
    torch.distributed.init_process_group(backend="nccl",
                                         init_method=dist_init_method,
                                         world_size=world_size,
                                         rank=dev_id)
    gpu_rank = torch.distributed.get_rank()
    assert gpu_rank == dev_id
    main(dev_id, args)
Zihao Ye's avatar
Zihao Ye committed
46

47
48
49
50
51
52
53
54
def main(dev_id, args):
    if dev_id == -1:
        device = torch.device('cpu')
    else:
        device = torch.device('cuda:{}'.format(dev_id))
    # Set current device
    th.cuda.set_device(device)
    # Prepare dataset
Zihao Ye's avatar
Zihao Ye committed
55
56
57
58
    dataset = get_dataset(args.dataset)
    V = dataset.vocab_size
    criterion = LabelSmoothing(V, padding_idx=dataset.pad_id, smoothing=0.1)
    dim_model = 512
59
    # Build graph pool
Zihao Ye's avatar
Zihao Ye committed
60
    graph_pool = GraphPool()
61
62
63
    # Create model
    model = make_model(V, V, N=args.N, dim_model=dim_model,
                       universal=args.universal)
Zihao Ye's avatar
Zihao Ye committed
64
65
66
    # Sharing weights between Encoder & Decoder
    model.src_embed.lut.weight = model.tgt_embed.lut.weight
    model.generator.proj.weight = model.tgt_embed.lut.weight
67
68
69
70
71
72
73
74
75
76
77
78
    # Move model to corresponding device
    model, criterion = model.to(device), criterion.to(device)
    # Loss function
    if args.ngpu > 1:
        dev_rank = dev_id # current device id
        ndev = args.ngpu # number of devices (including cpu)
        loss_compute = partial(MultiGPULossCompute, criterion, args.ngpu,
                               args.grad_accum, model)
    else: # cpu or single gpu case
        dev_rank = 0
        ndev = 1
        loss_compute = partial(SimpleLossCompute, criterion, args.grad_accum)
Zihao Ye's avatar
Zihao Ye committed
79

80
81
82
83
    if ndev > 1:
        for param in model.parameters():
            dist.all_reduce(param.data, op=dist.ReduceOp.SUM)
            param.data /= ndev
Zihao Ye's avatar
Zihao Ye committed
84

85
86
87
88
89
90
    # Optimizer
    model_opt = NoamOpt(dim_model, 1, 4000,
                        T.optim.Adam(model.parameters(), lr=1e-3,
                                     betas=(0.9, 0.98), eps=1e-9))

    # Train & evaluate
Zihao Ye's avatar
Zihao Ye committed
91
    for epoch in range(100):
92
93
94
        start = time.time()
        train_iter = dataset(graph_pool, mode='train', batch_size=args.batch,
                             device=device, dev_rank=dev_rank, ndev=ndev)
Zihao Ye's avatar
Zihao Ye committed
95
        model.train(True)
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        run_epoch(epoch, train_iter, dev_rank, ndev, model,
                  loss_compute(opt=model_opt), is_train=True)
        if dev_rank == 0:
            model.att_weight_map = None
            model.eval()
            valid_iter = dataset(graph_pool, mode='valid', batch_size=args.batch,
                                 device=device, dev_rank=dev_rank, ndev=1)
            run_epoch(epoch, valid_iter, dev_rank, 1, model,
                      loss_compute(opt=None), is_train=False)
            end = time.time()
            print("epoch time: {}".format(end - start))

            # Visualize attention
            if args.viz:
                src_seq = dataset.get_seq_by_id(VIZ_IDX, mode='valid', field='src')
                tgt_seq = dataset.get_seq_by_id(VIZ_IDX, mode='valid', field='tgt')[:-1]
                draw_atts(model.att_weight_map, src_seq, tgt_seq, exp_setting, 'epoch_{}'.format(epoch))
            args_filter = ['batch', 'gpus', 'viz', 'master_ip', 'master_port', 'grad_accum', 'ngpu']
            exp_setting = '-'.join('{}'.format(v) for k, v in vars(args).items() if k not in args_filter)
            with open('checkpoints/{}-{}.pkl'.format(exp_setting, epoch), 'wb') as f:
                torch.save(model.state_dict(), f)

if __name__ == '__main__':
    if not os.path.exists('checkpoints'):
        os.makedirs('checkpoints')
    np.random.seed(1111)
    argparser = argparse.ArgumentParser('training translation model')
    argparser.add_argument('--gpus', default='-1', type=str, help='gpu id')
    argparser.add_argument('--N', default=6, type=int, help='enc/dec layers')
    argparser.add_argument('--dataset', default='multi30k', help='dataset')
    argparser.add_argument('--batch', default=128, type=int, help='batch size')
    argparser.add_argument('--viz', action='store_true',
                           help='visualize attention')
    argparser.add_argument('--universal', action='store_true',
                           help='use universal transformer')
    argparser.add_argument('--master-ip', type=str, default='127.0.0.1',
                           help='master ip address')
    argparser.add_argument('--master-port', type=str, default='12345',
                           help='master port')
    argparser.add_argument('--grad-accum', type=int, default=1,
                           help='accumulate gradients for this many times '
                                'then update weights')
    args = argparser.parse_args()
    print(args)
Zihao Ye's avatar
Zihao Ye committed
140

141
142
143
144
145
146
147
148
149
150
151
152
153
154
    devices = list(map(int, args.gpus.split(',')))
    if len(devices) == 1:
        args.ngpu = 0 if devices[0] < 0 else 1
        main(devices[0], args)
    else:
        args.ngpu = len(devices)
        mp = torch.multiprocessing.get_context('spawn')
        procs = []
        for dev_id in devices:
            procs.append(mp.Process(target=run, args=(dev_id, args),
                                    daemon=True))
            procs[-1].start()
        for p in procs:
            p.join()
Zihao Ye's avatar
Zihao Ye committed
155