models.py 9.97 KB
Newer Older
Zihao Ye's avatar
Zihao Ye committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from .config import *
from .act import *
from .attention import *
from .viz import *
from .layers import *
from .functions import *
from .embedding import *
import threading
import torch as th
import dgl.function as fn
import torch.nn.init as INIT

class Encoder(nn.Module):
    def __init__(self, layer, N):
        super(Encoder, self).__init__()
        self.N = N
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.size)

    def pre_func(self, i, fields='qkv'):
        layer = self.layers[i]
        def func(nodes):
            x = nodes.data['x']
            norm_x = layer.sublayer[0].norm(x)
            return layer.self_attn.get(norm_x, fields=fields)
        return func

    def post_func(self, i):
        layer = self.layers[i]
        def func(nodes):
            x, wv, z = nodes.data['x'], nodes.data['wv'], nodes.data['z']
            o = layer.self_attn.get_o(wv / z)
            x = x + layer.sublayer[0].dropout(o)
            x = layer.sublayer[1](x, layer.feed_forward)
            return {'x': x if i < self.N - 1 else self.norm(x)}
        return func

class Decoder(nn.Module):
    def __init__(self, layer, N):
        super(Decoder, self).__init__()
        self.N = N
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.size)

    def pre_func(self, i, fields='qkv', l=0):
        layer = self.layers[i]
        def func(nodes):
            x = nodes.data['x']
49
50
51
            norm_x = layer.sublayer[l].norm(x) if fields.startswith('q') else x
            if fields != 'qkv':
                return layer.src_attn.get(norm_x, fields)
Zihao Ye's avatar
Zihao Ye committed
52
            else:
53
                return layer.self_attn.get(norm_x, fields)
Zihao Ye's avatar
Zihao Ye committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        return func

    def post_func(self, i, l=0):
        layer = self.layers[i]
        def func(nodes):
            x, wv, z = nodes.data['x'], nodes.data['wv'], nodes.data['z']
            o = layer.self_attn.get_o(wv / z)
            x = x + layer.sublayer[l].dropout(o)
            if l == 1:
                x = layer.sublayer[2](x, layer.feed_forward)
            return {'x': x if i < self.N - 1 else self.norm(x)}
        return func

class Transformer(nn.Module):
    def __init__(self, encoder, decoder, src_embed, tgt_embed, pos_enc, generator, h, d_k):
        super(Transformer, self).__init__()
        self.encoder,  self.decoder = encoder, decoder
        self.src_embed, self.tgt_embed = src_embed, tgt_embed
        self.pos_enc = pos_enc
        self.generator = generator
        self.h, self.d_k = h, d_k
        self.att_weight_map = None

    def propagate_attention(self, g, eids):
        # Compute attention score
        g.apply_edges(src_dot_dst('k', 'q', 'score'), eids)
        g.apply_edges(scaled_exp('score', np.sqrt(self.d_k)), eids)
        # Send weighted values to target nodes
        g.send_and_recv(eids,
                        [fn.src_mul_edge('v', 'score', 'v'), fn.copy_edge('score', 'score')],
                        [fn.sum('v', 'wv'), fn.sum('score', 'z')])

    def update_graph(self, g, eids, pre_pairs, post_pairs):
        "Update the node states and edge states of the graph."

        # Pre-compute queries and key-value pairs.
        for pre_func, nids in pre_pairs:
            g.apply_nodes(pre_func, nids)
        self.propagate_attention(g, eids)
        # Further calculation after attention mechanism
        for post_func, nids in post_pairs:
            g.apply_nodes(post_func, nids)

    def forward(self, graph):
        g = graph.g
        nids, eids = graph.nids, graph.eids

        # embed
        src_embed, src_pos = self.src_embed(graph.src[0]), self.pos_enc(graph.src[1])
        tgt_embed, tgt_pos = self.tgt_embed(graph.tgt[0]), self.pos_enc(graph.tgt[1])
        g.nodes[nids['enc']].data['x'] = self.pos_enc.dropout(src_embed + src_pos)
        g.nodes[nids['dec']].data['x'] = self.pos_enc.dropout(tgt_embed + tgt_pos)

        for i in range(self.encoder.N):
            pre_func = self.encoder.pre_func(i, 'qkv')
            post_func = self.encoder.post_func(i)
            nodes, edges = nids['enc'], eids['ee']
            self.update_graph(g, edges, [(pre_func, nodes)], [(post_func, nodes)])

        for i in range(self.decoder.N):
            pre_func = self.decoder.pre_func(i, 'qkv')
            post_func = self.decoder.post_func(i)
            nodes, edges = nids['dec'], eids['dd']
            self.update_graph(g, edges, [(pre_func, nodes)], [(post_func, nodes)])
            pre_q = self.decoder.pre_func(i, 'q', 1)
            pre_kv = self.decoder.pre_func(i, 'kv', 1)
            post_func = self.decoder.post_func(i, 1)
            nodes_e, edges = nids['enc'], eids['ed']
            self.update_graph(g, edges, [(pre_q, nodes), (pre_kv, nodes_e)], [(post_func, nodes)])

        # visualize attention
125
        """
Zihao Ye's avatar
Zihao Ye committed
126
127
            if self.att_weight_map is None:
                self._register_att_map(g, graph.nid_arr['enc'][VIZ_IDX], graph.nid_arr['dec'][VIZ_IDX])
128
        """
Zihao Ye's avatar
Zihao Ye committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

        return self.generator(g.ndata['x'][nids['dec']])

    def infer(self, graph, max_len, eos_id, k):
        '''
        This function implements Beam Search in DGL, which is required in inference phase.
        args:
            graph: a `Graph` object defined in `dgl.contrib.transformer.graph`.
            max_len: the maximum length of decoding.
            eos_id: the index of end-of-sequence symbol.
            k: beam size

        return:
            ret: a list of index array correspond to the input sequence specified by `graph``.
        '''
        g = graph.g
        N, E = graph.n_nodes, graph.n_edges
        nids, eids = graph.nids, graph.eids

        # embed & pos
        src_embed = self.src_embed(graph.src[0])
        src_pos = self.pos_enc(graph.src[1])
        g.nodes[nids['enc']].data['pos'] = graph.src[1]
        g.nodes[nids['enc']].data['x'] = self.pos_enc.dropout(src_embed + src_pos)
        tgt_pos = self.pos_enc(graph.tgt[1])
        g.nodes[nids['dec']].data['pos'] = graph.tgt[1]

        # init mask
        device = next(self.parameters()).device
        g.ndata['mask'] = th.zeros(N, dtype=th.uint8, device=device)

        # encode
        for i in range(self.encoder.N):
            pre_func = self.encoder.pre_func(i, 'qkv')
            post_func = self.encoder.post_func(i)
            nodes, edges = nids['enc'], eids['ee']
            self.update_graph(g, edges, [(pre_func, nodes)], [(post_func, nodes)])

        # decode
        log_prob = None
        y = graph.tgt[0]
        for step in range(1, max_len):
            y = y.view(-1)
            tgt_embed = self.tgt_embed(y)
            g.ndata['x'][nids['dec']] = self.pos_enc.dropout(tgt_embed + tgt_pos)
            edges_ed = g.filter_edges(lambda e: (e.dst['pos'] < step) & ~e.dst['mask'] , eids['ed'])
            edges_dd = g.filter_edges(lambda e: (e.dst['pos'] < step) & ~e.dst['mask'], eids['dd'])
            nodes_d = g.filter_nodes(lambda v: (v.data['pos'] < step) & ~v.data['mask'], nids['dec'])
            for i in range(self.decoder.N):
                pre_func, post_func = self.decoder.pre_func(i, 'qkv'), self.decoder.post_func(i)
                nodes, edges = nodes_d, edges_dd
                self.update_graph(g, edges, [(pre_func, nodes)], [(post_func, nodes)])
                pre_q, pre_kv = self.decoder.pre_func(i, 'q', 1), self.decoder.pre_func(i, 'kv', 1)
                post_func = self.decoder.post_func(i, 1)
                nodes_e, nodes_d, edges = nids['enc'], nodes_d, edges_ed
                self.update_graph(g, edges, [(pre_q, nodes_d), (pre_kv, nodes_e)], [(post_func, nodes_d)])

            frontiers = g.filter_nodes(lambda v: v.data['pos'] == step - 1, nids['dec'])
            out = self.generator(g.ndata['x'][frontiers])
            batch_size = frontiers.shape[0] // k
            vocab_size = out.shape[-1]
            if log_prob is None:
                log_prob, pos = out.view(batch_size, k, -1)[:, 0, :].topk(k, dim=-1)
                eos = th.zeros(batch_size).byte()
            else:
                log_prob, pos = (out.view(batch_size, k, -1) + log_prob.unsqueeze(-1)).view(batch_size, -1).topk(k, dim=-1)

            _y = y.view(batch_size * k, -1)
            y = th.zeros_like(_y)
            for i in range(batch_size):
                if not eos[i]:
                    for j in range(k):
                        _j = pos[i, j].item() // vocab_size
                        token = pos[i, j].item() % vocab_size
                        y[i * k + j, :] = _y[i * k + _j, :]
                        y[i * k + j, step] = token
                        if j == 0:
                            eos[i] = eos[i] | (token == eos_id)
                else:
                    y[i*k:(i+1)*k, :] = _y[i*k:(i+1)*k, :]

            if eos.all():
                break
            else:
                g.ndata['mask'][nids['dec']] = eos.unsqueeze(-1).repeat(1, k * max_len).view(-1).to(device)
        return y.view(batch_size, k, -1)[:, 0, :].tolist()

    def _register_att_map(self, g, enc_ids, dec_ids):
        self.att_weight_map = [
            get_attention_map(g, enc_ids, enc_ids, self.h),
            get_attention_map(g, enc_ids, dec_ids, self.h),
            get_attention_map(g, dec_ids, dec_ids, self.h),
        ]


def make_model(src_vocab, tgt_vocab, N=6,
                   dim_model=512, dim_ff=2048, h=8, dropout=0.1, universal=False):
    if universal:
        return make_universal_model(src_vocab, tgt_vocab, dim_model, dim_ff, h, dropout)
    c = copy.deepcopy
    attn = MultiHeadAttention(h, dim_model)
    ff = PositionwiseFeedForward(dim_model, dim_ff)
    pos_enc = PositionalEncoding(dim_model, dropout)

    encoder = Encoder(EncoderLayer(dim_model, c(attn), c(ff), dropout), N)
    decoder = Decoder(DecoderLayer(dim_model, c(attn), c(attn), c(ff), dropout), N)
    src_embed = Embeddings(src_vocab, dim_model)
    tgt_embed = Embeddings(tgt_vocab, dim_model)
    generator = Generator(dim_model, tgt_vocab)
    model = Transformer(
        encoder, decoder, src_embed, tgt_embed, pos_enc, generator, h, dim_model // h)
    # xavier init
    for p in model.parameters():
        if p.dim() > 1:
            INIT.xavier_uniform_(p)
    return model