node_classification_sage.py 8.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import argparse
import os
import time

import dgl
import dgl.nn as dglnn

import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
import torchmetrics.functional as MF
import tqdm
from dgl.data import AsNodePredDataset
from dgl.dataloading import (
    DataLoader,
    MultiLayerFullNeighborSampler,
    NeighborSampler,
)
from dgl.multiprocessing import shared_tensor
from ogb.nodeproppred import DglNodePropPredDataset
from torch.nn.parallel import DistributedDataParallel


class SAGE(nn.Module):
    def __init__(self, in_size, hid_size, out_size):
        super().__init__()
        self.layers = nn.ModuleList()
        # three-layer GraphSAGE-mean
        self.layers.append(dglnn.SAGEConv(in_size, hid_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hid_size, hid_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hid_size, out_size, "mean"))
        self.dropout = nn.Dropout(0.5)
        self.hid_size = hid_size
        self.out_size = out_size

    def forward(self, blocks, x):
        h = x
        for l, (layer, block) in enumerate(zip(self.layers, blocks)):
            h = layer(block, h)
            if l != len(self.layers) - 1:
                h = F.relu(h)
                h = self.dropout(h)
        return h

    def inference(self, g, device, batch_size, use_uva):
        g.ndata["h"] = g.ndata["feat"]
        sampler = MultiLayerFullNeighborSampler(1, prefetch_node_feats=["h"])
        for l, layer in enumerate(self.layers):
            dataloader = DataLoader(
                g,
                torch.arange(g.num_nodes(), device=device),
                sampler,
                device=device,
                batch_size=batch_size,
                shuffle=False,
                drop_last=False,
                num_workers=0,
                use_ddp=True,
                use_uva=use_uva,
            )
            # in order to prevent running out of GPU memory, allocate a
            # shared output tensor 'y' in host memory
            y = shared_tensor(
                (
                    g.num_nodes(),
                    self.hid_size
                    if l != len(self.layers) - 1
                    else self.out_size,
                )
            )
            for input_nodes, output_nodes, blocks in (
                tqdm.tqdm(dataloader) if dist.get_rank() == 0 else dataloader
            ):
                x = blocks[0].srcdata["h"]
                h = layer(blocks[0], x)  # len(blocks) = 1
                if l != len(self.layers) - 1:
                    h = F.relu(h)
                    h = self.dropout(h)
                # non_blocking (with pinned memory) to accelerate data transfer
                y[output_nodes] = h.to(y.device, non_blocking=True)
            # make sure all GPUs are done writing to 'y'
            dist.barrier()
            g.ndata["h"] = y if use_uva else y.to(device)

        g.ndata.pop("h")
        return y


def evaluate(model, g, num_classes, dataloader):
    model.eval()
    ys = []
    y_hats = []
    for it, (input_nodes, output_nodes, blocks) in enumerate(dataloader):
        with torch.no_grad():
            x = blocks[0].srcdata["feat"]
            ys.append(blocks[-1].dstdata["label"])
            y_hats.append(model(blocks, x))
    return MF.accuracy(
        torch.cat(y_hats),
        torch.cat(ys),
        task="multiclass",
        num_classes=num_classes,
    )


def layerwise_infer(
    proc_id, device, g, num_classes, nid, model, use_uva, batch_size=2**10
):
    model.eval()
    with torch.no_grad():
        pred = model.module.inference(g, device, batch_size, use_uva)
        pred = pred[nid]
        labels = g.ndata["label"][nid].to(pred.device)
    if proc_id == 0:
        acc = MF.accuracy(
            pred, labels, task="multiclass", num_classes=num_classes
        )
        print("Test accuracy {:.4f}".format(acc.item()))


def train(
    proc_id,
    nprocs,
    device,
    g,
    num_classes,
    train_idx,
    val_idx,
    model,
    use_uva,
    num_epochs,
):
    sampler = NeighborSampler(
        [10, 10, 10], prefetch_node_feats=["feat"], prefetch_labels=["label"]
    )
    train_dataloader = DataLoader(
        g,
        train_idx,
        sampler,
        device=device,
        batch_size=1024,
        shuffle=True,
        drop_last=False,
        num_workers=0,
        use_ddp=True,
        use_uva=use_uva,
    )
    val_dataloader = DataLoader(
        g,
        val_idx,
        sampler,
        device=device,
        batch_size=1024,
        shuffle=True,
        drop_last=False,
        num_workers=0,
        use_ddp=True,
        use_uva=use_uva,
    )
    opt = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=5e-4)
    for epoch in range(num_epochs):
        t0 = time.time()
        model.train()
        total_loss = 0
        for it, (_, _, blocks) in enumerate(train_dataloader):
            x = blocks[0].srcdata["feat"]
            y = blocks[-1].dstdata["label"]
            y_hat = model(blocks, x)
            loss = F.cross_entropy(y_hat, y)
            opt.zero_grad()
            loss.backward()
            opt.step()
            total_loss += loss
        acc = (
            evaluate(model, g, num_classes, val_dataloader).to(device) / nprocs
        )
        t1 = time.time()
        dist.reduce(acc, 0)
        if proc_id == 0:
            print(
                "Epoch {:05d} | Loss {:.4f} | Accuracy {:.4f} | "
                "Time {:.4f}".format(
                    epoch, total_loss / (it + 1), acc.item(), t1 - t0
                )
            )


def run(proc_id, nprocs, devices, g, data, mode, num_epochs):
    # find corresponding device for my rank
    device = devices[proc_id]
    torch.cuda.set_device(device)
    # initialize process group and unpack data for sub-processes
    dist.init_process_group(
        backend="nccl",
        init_method="tcp://127.0.0.1:12345",
        world_size=nprocs,
        rank=proc_id,
    )
    num_classes, train_idx, val_idx, test_idx = data
    train_idx = train_idx.to(device)
    val_idx = val_idx.to(device)
    g = g.to(device if mode == "puregpu" else "cpu")
    # create GraphSAGE model (distributed)
    in_size = g.ndata["feat"].shape[1]
    model = SAGE(in_size, 256, num_classes).to(device)
    model = DistributedDataParallel(
        model, device_ids=[device], output_device=device
    )
    # training + testing
    use_uva = mode == "mixed"
    train(
        proc_id,
        nprocs,
        device,
        g,
        num_classes,
        train_idx,
        val_idx,
        model,
        use_uva,
        num_epochs,
    )
    layerwise_infer(proc_id, device, g, num_classes, test_idx, model, use_uva)
    # cleanup process group
    dist.destroy_process_group()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--mode",
        default="mixed",
        choices=["mixed", "puregpu"],
        help="Training mode. 'mixed' for CPU-GPU mixed training, "
        "'puregpu' for pure-GPU training.",
    )
    parser.add_argument(
        "--gpu",
        type=str,
        default="0",
        help="GPU(s) in use. Can be a list of gpu ids for multi-gpu training,"
        " e.g., 0,1,2,3.",
    )
    parser.add_argument(
        "--num_epochs",
        type=int,
        default=20,
        help="Number of epochs for train.",
    )
    parser.add_argument(
        "--dataset_name",
        type=str,
        default="ogbn-products",
        help="Dataset name.",
    )
    parser.add_argument(
        "--dataset_dir",
        type=str,
        default="dataset",
        help="Root directory of dataset.",
    )
    args = parser.parse_args()
    devices = list(map(int, args.gpu.split(",")))
    nprocs = len(devices)
    assert (
        torch.cuda.is_available()
    ), f"Must have GPUs to enable multi-gpu training."
    print(f"Training in {args.mode} mode using {nprocs} GPU(s)")

    # load and preprocess dataset
    print("Loading data")
    dataset = AsNodePredDataset(
        DglNodePropPredDataset(args.dataset_name, root=args.dataset_dir)
    )
    g = dataset[0]
    # avoid creating certain graph formats in each sub-process to save momory
    g.create_formats_()
    if args.dataset_name == "ogbn-arxiv":
        g = dgl.to_bidirected(g, copy_ndata=True)
        g = dgl.add_self_loop(g)
    # thread limiting to avoid resource competition
    os.environ["OMP_NUM_THREADS"] = str(mp.cpu_count() // 2 // nprocs)
    data = (
        dataset.num_classes,
        dataset.train_idx,
        dataset.val_idx,
        dataset.test_idx,
    )

    mp.spawn(
        run,
        args=(nprocs, devices, g, data, args.mode, args.num_epochs),
        nprocs=nprocs,
    )