train_acm.py 4.67 KB
Newer Older
Ziniu Hu's avatar
Ziniu Hu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python
# coding: utf-8

# In[1]:


import scipy.io
import urllib.request
import dgl
import math
import numpy as np
from model import *
import argparse

torch.manual_seed(0)
data_url = 'https://s3.us-east-2.amazonaws.com/dgl.ai/dataset/ACM.mat'
data_file_path = '/tmp/ACM.mat'

urllib.request.urlretrieve(data_url, data_file_path)
data = scipy.io.loadmat(data_file_path)


parser = argparse.ArgumentParser(description='Training GNN on ogbn-products benchmark')



parser.add_argument('--n_epoch', type=int, default=200)
parser.add_argument('--n_hid',   type=int, default=256)
parser.add_argument('--n_inp',   type=int, default=256)
parser.add_argument('--clip',    type=int, default=1.0) 
parser.add_argument('--max_lr',  type=float, default=1e-3) 

args = parser.parse_args()

def get_n_params(model):
    pp=0
    for p in list(model.parameters()):
        nn=1
        for s in list(p.size()):
            nn = nn*s
        pp += nn
    return pp

def train(model, G):
    best_val_acc = 0
    best_test_acc = 0
    train_step = 0
    for epoch in np.arange(args.n_epoch) + 1:
        model.train()
        logits = model(G, 'paper')
        # The loss is computed only for labeled nodes.
        loss = F.cross_entropy(logits[train_idx], labels[train_idx].to(device))
        optimizer.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
        optimizer.step()
        train_step += 1
        scheduler.step(train_step)
        if epoch % 5 == 0:
            model.eval()
            logits = model(G, 'paper')
            pred   = logits.argmax(1).cpu()
            train_acc = (pred[train_idx] == labels[train_idx]).float().mean()
            val_acc   = (pred[val_idx]   == labels[val_idx]).float().mean()
            test_acc  = (pred[test_idx]  == labels[test_idx]).float().mean()
            if best_val_acc < val_acc:
                best_val_acc = val_acc
                best_test_acc = test_acc
            print('Epoch: %d LR: %.5f Loss %.4f, Train Acc %.4f, Val Acc %.4f (Best %.4f), Test Acc %.4f (Best %.4f)' % (
                epoch,
                optimizer.param_groups[0]['lr'], 
                loss.item(),
                train_acc.item(),
                val_acc.item(),
                best_val_acc.item(),
                test_acc.item(),
                best_test_acc.item(),
            ))


G = dgl.heterograph({
        ('paper', 'written-by', 'author') : data['PvsA'],
        ('author', 'writing', 'paper') : data['PvsA'].transpose(),
        ('paper', 'citing', 'paper') : data['PvsP'],
        ('paper', 'cited', 'paper') : data['PvsP'].transpose(),
        ('paper', 'is-about', 'subject') : data['PvsL'],
        ('subject', 'has', 'paper') : data['PvsL'].transpose(),
    })
print(G)



pvc = data['PvsC'].tocsr()
p_selected = pvc.tocoo()
# generate labels
labels = pvc.indices
labels = torch.tensor(labels).long()

# generate train/val/test split
pid = p_selected.row
shuffle = np.random.permutation(pid)
train_idx = torch.tensor(shuffle[0:800]).long()
val_idx = torch.tensor(shuffle[800:900]).long()
test_idx = torch.tensor(shuffle[900:]).long()




device = torch.device("cuda:0")
G.node_dict = {}
G.edge_dict = {}
for ntype in G.ntypes:
    G.node_dict[ntype] = len(G.node_dict)
for etype in G.etypes:
    G.edge_dict[etype] = len(G.edge_dict)
    G.edges[etype].data['id'] = torch.ones(G.number_of_edges(etype), dtype=torch.long) * G.edge_dict[etype] 
    
#     Random initialize input feature
for ntype in G.ntypes:
    emb = nn.Parameter(torch.Tensor(G.number_of_nodes(ntype), 256), requires_grad = False).to(device)
    nn.init.xavier_uniform_(emb)
    G.nodes[ntype].data['inp'] = emb
    
    
model = HGT(G, n_inp=args.n_inp, n_hid=args.n_hid, n_out=labels.max().item()+1, n_layers=2, n_heads=4, use_norm = True).to(device)
optimizer = torch.optim.AdamW(model.parameters())
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, total_steps=args.n_epoch, max_lr = args.max_lr)
print('Training HGT with #param: %d' % (get_n_params(model)))
train(model, G)




model = HeteroRGCN(G, in_size=args.n_inp, hidden_size=args.n_hid, out_size=labels.max().item()+1).to(device)
optimizer = torch.optim.AdamW(model.parameters())
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, total_steps=args.n_epoch, max_lr = args.max_lr)
print('Training RGCN with #param: %d' % (get_n_params(model)))
train(model, G)



model = HGT(G, n_inp=args.n_inp, n_hid=args.n_hid, n_out=labels.max().item()+1, n_layers=0, n_heads=4).to(device)
optimizer = torch.optim.AdamW(model.parameters())
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, total_steps=args.n_epoch, max_lr = args.max_lr)
print('Training MLP with #param: %d' % (get_n_params(model)))
train(model, G)