array_op_impl.cu 13.3 KB
Newer Older
1
/*!
2
 *  Copyright (c) 2020 by Contributors
3
4
5
6
7
 * \file array/cuda/array_op_impl.cu
 * \brief Array operator GPU implementation
 */
#include <dgl/array.h>
#include "../../runtime/cuda/cuda_common.h"
8
#include "./utils.h"
9
#include "../arith.h"
10
11
12
13
14
15

namespace dgl {
using runtime::NDArray;
namespace aten {
namespace impl {

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
///////////////////////////// BinaryElewise /////////////////////////////

template <typename IdType, typename Op>
__global__ void _BinaryElewiseKernel(
    const IdType* lhs, const IdType* rhs, IdType* out, int64_t length) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
    out[tx] = Op::Call(lhs[tx], rhs[tx]);
    tx += stride_x;
  }
}

template <DLDeviceType XPU, typename IdType, typename Op>
IdArray BinaryElewise(IdArray lhs, IdArray rhs) {
  const int64_t len = lhs->shape[0];
  IdArray ret = NewIdArray(lhs->shape[0], lhs->ctx, lhs->dtype.bits);
  const IdType* lhs_data = static_cast<IdType*>(lhs->data);
  const IdType* rhs_data = static_cast<IdType*>(rhs->data);
  IdType* ret_data = static_cast<IdType*>(ret->data);
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
  int nt = cuda::FindNumThreads(len);
  int nb = (len + nt - 1) / nt;
39
40
  CUDA_KERNEL_CALL((_BinaryElewiseKernel<IdType, Op>),
      nb, nt, 0, thr_entry->stream,
41
42
43
44
45
46
47
48
      lhs_data, rhs_data, ret_data, len);
  return ret;
}

template IdArray BinaryElewise<kDLGPU, int32_t, arith::Add>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Sub>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Mul>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Div>(IdArray lhs, IdArray rhs);
49
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Mod>(IdArray lhs, IdArray rhs);
50
51
52
53
54
55
56
57
58
59
template IdArray BinaryElewise<kDLGPU, int32_t, arith::GT>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::LT>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::GE>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::LE>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::EQ>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::NE>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Add>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Sub>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Mul>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Div>(IdArray lhs, IdArray rhs);
60
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Mod>(IdArray lhs, IdArray rhs);
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
template IdArray BinaryElewise<kDLGPU, int64_t, arith::GT>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::LT>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::GE>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::LE>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::EQ>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::NE>(IdArray lhs, IdArray rhs);


template <typename IdType, typename Op>
__global__ void _BinaryElewiseKernel(
    const IdType* lhs, IdType rhs, IdType* out, int64_t length) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
    out[tx] = Op::Call(lhs[tx], rhs);
    tx += stride_x;
  }
}

template <DLDeviceType XPU, typename IdType, typename Op>
IdArray BinaryElewise(IdArray lhs, IdType rhs) {
  const int64_t len = lhs->shape[0];
  IdArray ret = NewIdArray(lhs->shape[0], lhs->ctx, lhs->dtype.bits);
  const IdType* lhs_data = static_cast<IdType*>(lhs->data);
  IdType* ret_data = static_cast<IdType*>(ret->data);
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
  int nt = cuda::FindNumThreads(len);
  int nb = (len + nt - 1) / nt;
89
90
  CUDA_KERNEL_CALL((_BinaryElewiseKernel<IdType, Op>),
      nb, nt, 0, thr_entry->stream,
91
92
93
94
95
96
97
98
      lhs_data, rhs, ret_data, len);
  return ret;
}

template IdArray BinaryElewise<kDLGPU, int32_t, arith::Add>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Sub>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Mul>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Div>(IdArray lhs, int32_t rhs);
99
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Mod>(IdArray lhs, int32_t rhs);
100
101
102
103
104
105
106
107
108
109
template IdArray BinaryElewise<kDLGPU, int32_t, arith::GT>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::LT>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::GE>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::LE>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::EQ>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::NE>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Add>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Sub>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Mul>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Div>(IdArray lhs, int64_t rhs);
110
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Mod>(IdArray lhs, int64_t rhs);
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
template IdArray BinaryElewise<kDLGPU, int64_t, arith::GT>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::LT>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::GE>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::LE>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::EQ>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::NE>(IdArray lhs, int64_t rhs);



template <typename IdType, typename Op>
__global__ void _BinaryElewiseKernel(
    IdType lhs, const IdType* rhs, IdType* out, int64_t length) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
    out[tx] = Op::Call(lhs, rhs[tx]);
    tx += stride_x;
  }
}

template <DLDeviceType XPU, typename IdType, typename Op>
IdArray BinaryElewise(IdType lhs, IdArray rhs) {
  const int64_t len = rhs->shape[0];
  IdArray ret = NewIdArray(rhs->shape[0], rhs->ctx, rhs->dtype.bits);
  const IdType* rhs_data = static_cast<IdType*>(rhs->data);
  IdType* ret_data = static_cast<IdType*>(ret->data);
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
  int nt = cuda::FindNumThreads(len);
  int nb = (len + nt - 1) / nt;
140
141
  CUDA_KERNEL_CALL((_BinaryElewiseKernel<IdType, Op>),
      nb, nt, 0, thr_entry->stream,
142
143
144
145
146
147
148
149
      lhs, rhs_data, ret_data, len);
  return ret;
}

template IdArray BinaryElewise<kDLGPU, int32_t, arith::Add>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Sub>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Mul>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Div>(int32_t lhs, IdArray rhs);
150
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Mod>(int32_t lhs, IdArray rhs);
151
152
153
154
155
156
157
158
159
160
template IdArray BinaryElewise<kDLGPU, int32_t, arith::GT>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::LT>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::GE>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::LE>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::EQ>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::NE>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Add>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Sub>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Mul>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Div>(int64_t lhs, IdArray rhs);
161
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Mod>(int64_t lhs, IdArray rhs);
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
template IdArray BinaryElewise<kDLGPU, int64_t, arith::GT>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::LT>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::GE>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::LE>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::EQ>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::NE>(int64_t lhs, IdArray rhs);

template <typename IdType, typename Op>
__global__ void _UnaryElewiseKernel(
    const IdType* lhs, IdType* out, int64_t length) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
    out[tx] = Op::Call(lhs[tx]);
    tx += stride_x;
177
  }
178
179
180
181
182
183
184
185
186
187
188
}

template <DLDeviceType XPU, typename IdType, typename Op>
IdArray UnaryElewise(IdArray lhs) {
  const int64_t len = lhs->shape[0];
  IdArray ret = NewIdArray(lhs->shape[0], lhs->ctx, lhs->dtype.bits);
  const IdType* lhs_data = static_cast<IdType*>(lhs->data);
  IdType* ret_data = static_cast<IdType*>(ret->data);
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
  int nt = cuda::FindNumThreads(len);
  int nb = (len + nt - 1) / nt;
189
190
  CUDA_KERNEL_CALL((_UnaryElewiseKernel<IdType, Op>),
      nb, nt, 0, thr_entry->stream,
191
      lhs_data, ret_data, len);
192
193
194
  return ret;
}

195
196
197
198
199
template IdArray UnaryElewise<kDLGPU, int32_t, arith::Neg>(IdArray lhs);
template IdArray UnaryElewise<kDLGPU, int64_t, arith::Neg>(IdArray lhs);

///////////////////////////// Full /////////////////////////////

200
template <typename DType>
201
__global__ void _FullKernel(
202
    DType* out, int64_t length, DType val) {
203
204
205
206
207
208
209
210
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
    out[tx] = val;
    tx += stride_x;
  }
}

211
212
213
214
template <DLDeviceType XPU, typename DType>
NDArray Full(DType val, int64_t length, DLContext ctx) {
  NDArray ret = NDArray::Empty({length}, DLDataTypeTraits<DType>::dtype, ctx);
  DType* ret_data = static_cast<DType*>(ret->data);
215
216
217
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
  int nt = cuda::FindNumThreads(length);
  int nb = (length + nt - 1) / nt;
218
  CUDA_KERNEL_CALL((_FullKernel<DType>), nb, nt, 0, thr_entry->stream,
219
      ret_data, length, val);
220
221
222
223
224
  return ret;
}

template IdArray Full<kDLGPU, int32_t>(int32_t val, int64_t length, DLContext ctx);
template IdArray Full<kDLGPU, int64_t>(int64_t val, int64_t length, DLContext ctx);
225
226
template IdArray Full<kDLGPU, float>(float val, int64_t length, DLContext ctx);
template IdArray Full<kDLGPU, double>(double val, int64_t length, DLContext ctx);
227

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

///////////////////////////// Range /////////////////////////////

template <typename IdType>
__global__ void _RangeKernel(IdType* out, IdType low, IdType length) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
    out[tx] = low + tx;
    tx += stride_x;
  }
}

template <DLDeviceType XPU, typename IdType>
IdArray Range(IdType low, IdType high, DLContext ctx) {
  CHECK(high >= low) << "high must be bigger than low";
  const IdType length = high - low;
  IdArray ret = NewIdArray(length, ctx, sizeof(IdType) * 8);
  if (length == 0)
    return ret;
  IdType* ret_data = static_cast<IdType*>(ret->data);
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
250
  int nt = cuda::FindNumThreads(length);
251
  int nb = (length + nt - 1) / nt;
252
253
254
  CUDA_KERNEL_CALL((_RangeKernel<IdType>),
      nb, nt, 0, thr_entry->stream,
      ret_data, low, length);
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
  return ret;
}

template IdArray Range<kDLGPU, int32_t>(int32_t, int32_t, DLContext);
template IdArray Range<kDLGPU, int64_t>(int64_t, int64_t, DLContext);

///////////////////////////// AsNumBits /////////////////////////////

template <typename InType, typename OutType>
__global__ void _CastKernel(const InType* in, OutType* out, size_t length) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
    out[tx] = in[tx];
    tx += stride_x;
  }
}

template <DLDeviceType XPU, typename IdType>
IdArray AsNumBits(IdArray arr, uint8_t bits) {
  const std::vector<int64_t> shape(arr->shape, arr->shape + arr->ndim);
  IdArray ret = IdArray::Empty(shape, DLDataType{kDLInt, bits, 1}, arr->ctx);
  const int64_t length = ret.NumElements();
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
279
  int nt = cuda::FindNumThreads(length);
280
281
  int nb = (length + nt - 1) / nt;
  if (bits == 32) {
282
283
    CUDA_KERNEL_CALL((_CastKernel<IdType, int32_t>),
        nb, nt, 0, thr_entry->stream,
284
285
        static_cast<IdType*>(arr->data), static_cast<int32_t*>(ret->data), length);
  } else {
286
287
    CUDA_KERNEL_CALL((_CastKernel<IdType, int64_t>),
        nb, nt, 0, thr_entry->stream,
288
289
290
291
292
293
294
295
296
297
298
299
        static_cast<IdType*>(arr->data), static_cast<int64_t*>(ret->data), length);
  }
  return ret;
}


template IdArray AsNumBits<kDLGPU, int32_t>(IdArray arr, uint8_t bits);
template IdArray AsNumBits<kDLGPU, int64_t>(IdArray arr, uint8_t bits);

}  // namespace impl
}  // namespace aten
}  // namespace dgl