spmat_op_impl_csr.cc 21.2 KB
Newer Older
1
2
/*!
 *  Copyright (c) 2019 by Contributors
3
4
 * \file array/cpu/spmat_op_impl_csr.cc
 * \brief CSR matrix operator CPU implementation
5
6
7
8
 */
#include <dgl/array.h>
#include <vector>
#include <unordered_set>
9
#include <numeric>
10
#include "array_utils.h"
11
12
13
14
15
16
17
18
19
20
21
22
23
24

namespace dgl {

using runtime::NDArray;

namespace aten {
namespace impl {

///////////////////////////// CSRIsNonZero /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool CSRIsNonZero(CSRMatrix csr, int64_t row, int64_t col) {
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
Da Zheng's avatar
Da Zheng committed
25
26
27
28
29
30
31
32
33
  if (csr.sorted) {
    const IdType *start = indices_data + indptr_data[row];
    const IdType *end = indices_data + indptr_data[row + 1];
    return std::binary_search(start, end, col);
  } else {
    for (IdType i = indptr_data[row]; i < indptr_data[row + 1]; ++i) {
      if (indices_data[i] == col) {
        return true;
      }
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    }
  }
  return false;
}

template bool CSRIsNonZero<kDLCPU, int32_t>(CSRMatrix, int64_t, int64_t);
template bool CSRIsNonZero<kDLCPU, int64_t>(CSRMatrix, int64_t, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray CSRIsNonZero(CSRMatrix csr, NDArray row, NDArray col) {
  const auto rowlen = row->shape[0];
  const auto collen = col->shape[0];
  const auto rstlen = std::max(rowlen, collen);
  NDArray rst = NDArray::Empty({rstlen}, row->dtype, row->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
  const IdType* row_data = static_cast<IdType*>(row->data);
  const IdType* col_data = static_cast<IdType*>(col->data);
  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
    *(rst_data++) = CSRIsNonZero<XPU, IdType>(csr, row_data[i], col_data[j])? 1 : 0;
  }
  return rst;
}

template NDArray CSRIsNonZero<kDLCPU, int32_t>(CSRMatrix, NDArray, NDArray);
template NDArray CSRIsNonZero<kDLCPU, int64_t>(CSRMatrix, NDArray, NDArray);

///////////////////////////// CSRHasDuplicate /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool CSRHasDuplicate(CSRMatrix csr) {
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  for (IdType src = 0; src < csr.num_rows; ++src) {
    std::unordered_set<IdType> hashmap;
    for (IdType eid = indptr_data[src]; eid < indptr_data[src+1]; ++eid) {
      const IdType dst = indices_data[eid];
      if (hashmap.count(dst)) {
        return true;
      } else {
        hashmap.insert(dst);
      }
    }
  }
  return false;
}

template bool CSRHasDuplicate<kDLCPU, int32_t>(CSRMatrix csr);
template bool CSRHasDuplicate<kDLCPU, int64_t>(CSRMatrix csr);

///////////////////////////// CSRGetRowNNZ /////////////////////////////

template <DLDeviceType XPU, typename IdType>
int64_t CSRGetRowNNZ(CSRMatrix csr, int64_t row) {
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  return indptr_data[row + 1] - indptr_data[row];
}

template int64_t CSRGetRowNNZ<kDLCPU, int32_t>(CSRMatrix, int64_t);
template int64_t CSRGetRowNNZ<kDLCPU, int64_t>(CSRMatrix, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray CSRGetRowNNZ(CSRMatrix csr, NDArray rows) {
98
  CHECK_SAME_DTYPE(csr.indices, rows);
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
  const auto len = rows->shape[0];
  const IdType* vid_data = static_cast<IdType*>(rows->data);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  NDArray rst = NDArray::Empty({len}, rows->dtype, rows->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
  for (int64_t i = 0; i < len; ++i) {
    const auto vid = vid_data[i];
    rst_data[i] = indptr_data[vid + 1] - indptr_data[vid];
  }
  return rst;
}

template NDArray CSRGetRowNNZ<kDLCPU, int32_t>(CSRMatrix, NDArray);
template NDArray CSRGetRowNNZ<kDLCPU, int64_t>(CSRMatrix, NDArray);

///////////////////////////// CSRGetRowColumnIndices /////////////////////////////

template <DLDeviceType XPU, typename IdType>
NDArray CSRGetRowColumnIndices(CSRMatrix csr, int64_t row) {
  const int64_t len = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const int64_t offset = indptr_data[row] * sizeof(IdType);
  return csr.indices.CreateView({len}, csr.indices->dtype, offset);
}

template NDArray CSRGetRowColumnIndices<kDLCPU, int32_t>(CSRMatrix, int64_t);
template NDArray CSRGetRowColumnIndices<kDLCPU, int64_t>(CSRMatrix, int64_t);

///////////////////////////// CSRGetRowData /////////////////////////////

129
template <DLDeviceType XPU, typename IdType>
130
131
132
NDArray CSRGetRowData(CSRMatrix csr, int64_t row) {
  const int64_t len = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
133
134
135
136
137
  const int64_t offset = indptr_data[row] * sizeof(IdType);
  if (CSRHasData(csr))
    return csr.data.CreateView({len}, csr.data->dtype, offset);
  else
    return aten::Range(offset, offset + len, csr.indptr->dtype.bits, csr.indptr->ctx);
138
139
}

140
141
template NDArray CSRGetRowData<kDLCPU, int32_t>(CSRMatrix, int64_t);
template NDArray CSRGetRowData<kDLCPU, int64_t>(CSRMatrix, int64_t);
142
143
144
145

///////////////////////////// CSRGetData /////////////////////////////
///////////////////////////// CSRGetDataAndIndices /////////////////////////////

146
147
template <DLDeviceType XPU, typename IdType>
void CollectDataIndicesFromSorted(const IdType *indices_data, const IdType *data,
Da Zheng's avatar
Da Zheng committed
148
149
                                  const IdType start, const IdType end, const IdType col,
                                  std::vector<IdType> *col_vec,
150
                                  std::vector<IdType> *ret_vec) {
Da Zheng's avatar
Da Zheng committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
  const IdType *start_ptr = indices_data + start;
  const IdType *end_ptr = indices_data + end;
  auto it = std::lower_bound(start_ptr, end_ptr, col);
  // This might be a multi-graph. We need to collect all of the matched
  // columns.
  for (; it != end_ptr; it++) {
    // If the col exist
    if (*it == col) {
      IdType idx = it - indices_data;
      col_vec->push_back(indices_data[idx]);
      ret_vec->push_back(data[idx]);
    } else {
      // If we find a column that is different, we can stop searching now.
      break;
    }
  }
}

169
template <DLDeviceType XPU, typename IdType>
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
std::vector<NDArray> CSRGetDataAndIndices(CSRMatrix csr, NDArray rows, NDArray cols) {
  // TODO(minjie): more efficient implementation for matrix without duplicate entries
  const int64_t rowlen = rows->shape[0];
  const int64_t collen = cols->shape[0];

  CHECK((rowlen == collen) || (rowlen == 1) || (collen == 1))
    << "Invalid row and col id array.";

  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const IdType* row_data = static_cast<IdType*>(rows->data);
  const IdType* col_data = static_cast<IdType*>(cols->data);

  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
185
  const IdType* data = CSRHasData(csr)? static_cast<IdType*>(csr.data->data) : nullptr;
186
187

  std::vector<IdType> ret_rows, ret_cols;
188
  std::vector<IdType> ret_data;
189
190
191
192
193

  for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
    const IdType row_id = row_data[i], col_id = col_data[j];
    CHECK(row_id >= 0 && row_id < csr.num_rows) << "Invalid row index: " << row_id;
    CHECK(col_id >= 0 && col_id < csr.num_cols) << "Invalid col index: " << col_id;
Da Zheng's avatar
Da Zheng committed
194
195
    if (csr.sorted) {
      // Here we collect col indices and data.
196
197
198
199
200
      CollectDataIndicesFromSorted<XPU, IdType>(indices_data, data,
                                                indptr_data[row_id],
                                                indptr_data[row_id + 1],
                                                col_id, &ret_cols,
                                                &ret_data);
Da Zheng's avatar
Da Zheng committed
201
202
203
204
205
206
207
      // We need to add row Ids.
      while (ret_rows.size() < ret_data.size()) {
        ret_rows.push_back(row_id);
      }
    } else {
      for (IdType i = indptr_data[row_id]; i < indptr_data[row_id+1]; ++i) {
        if (indices_data[i] == col_id) {
208
209
          ret_rows.push_back(row_id);
          ret_cols.push_back(col_id);
210
          ret_data.push_back(data? data[i] : i);
Da Zheng's avatar
Da Zheng committed
211
        }
212
213
214
215
      }
    }
  }

216
217
218
  return {NDArray::FromVector(ret_rows, csr.indptr->ctx),
          NDArray::FromVector(ret_cols, csr.indptr->ctx),
          NDArray::FromVector(ret_data, csr.data->ctx)};
219
220
}

221
template std::vector<NDArray> CSRGetDataAndIndices<kDLCPU, int32_t>(
222
    CSRMatrix csr, NDArray rows, NDArray cols);
223
template std::vector<NDArray> CSRGetDataAndIndices<kDLCPU, int64_t>(
224
225
226
227
228
229
    CSRMatrix csr, NDArray rows, NDArray cols);

///////////////////////////// CSRTranspose /////////////////////////////

// for a matrix of shape (N, M) and NNZ
// complexity: time O(NNZ + max(N, M)), space O(1)
230
template <DLDeviceType XPU, typename IdType>
231
232
233
234
235
236
CSRMatrix CSRTranspose(CSRMatrix csr) {
  const int64_t N = csr.num_rows;
  const int64_t M = csr.num_cols;
  const int64_t nnz = csr.indices->shape[0];
  const IdType* Ap = static_cast<IdType*>(csr.indptr->data);
  const IdType* Aj = static_cast<IdType*>(csr.indices->data);
237
  const IdType* Ax = CSRHasData(csr)? static_cast<IdType*>(csr.data->data) : nullptr;
238
239
  NDArray ret_indptr = NDArray::Empty({M + 1}, csr.indptr->dtype, csr.indptr->ctx);
  NDArray ret_indices = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
240
  NDArray ret_data = NDArray::Empty({nnz}, csr.indptr->dtype, csr.indptr->ctx);
241
242
  IdType* Bp = static_cast<IdType*>(ret_indptr->data);
  IdType* Bi = static_cast<IdType*>(ret_indices->data);
243
  IdType* Bx = static_cast<IdType*>(ret_data->data);
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

  std::fill(Bp, Bp + M, 0);

  for (int64_t j = 0; j < nnz; ++j) {
    Bp[Aj[j]]++;
  }

  // cumsum
  for (int64_t i = 0, cumsum = 0; i < M; ++i) {
    const IdType temp = Bp[i];
    Bp[i] = cumsum;
    cumsum += temp;
  }
  Bp[M] = nnz;

  for (int64_t i = 0; i < N; ++i) {
    for (IdType j = Ap[i]; j < Ap[i+1]; ++j) {
      const IdType dst = Aj[j];
      Bi[Bp[dst]] = i;
263
      Bx[Bp[dst]] = Ax? Ax[j] : j;
264
265
266
267
268
269
270
271
272
273
274
275
276
277
      Bp[dst]++;
    }
  }

  // correct the indptr
  for (int64_t i = 0, last = 0; i <= M; ++i) {
    IdType temp = Bp[i];
    Bp[i] = last;
    last = temp;
  }

  return CSRMatrix{csr.num_cols, csr.num_rows, ret_indptr, ret_indices, ret_data};
}

278
279
template CSRMatrix CSRTranspose<kDLCPU, int32_t>(CSRMatrix csr);
template CSRMatrix CSRTranspose<kDLCPU, int64_t>(CSRMatrix csr);
280
281
282
283
284
285
286
287
288
289
290
291
292

///////////////////////////// CSRToCOO /////////////////////////////
template <DLDeviceType XPU, typename IdType>
COOMatrix CSRToCOO(CSRMatrix csr) {
  const int64_t nnz = csr.indices->shape[0];
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  NDArray ret_row = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  IdType* ret_row_data = static_cast<IdType*>(ret_row->data);
  for (IdType i = 0; i < csr.indptr->shape[0] - 1; ++i) {
    std::fill(ret_row_data + indptr_data[i],
              ret_row_data + indptr_data[i + 1],
              i);
  }
293
294
295
  return COOMatrix(csr.num_rows, csr.num_cols,
                   ret_row, csr.indices, csr.data,
                   true, csr.sorted);
296
297
298
299
300
301
302
303
304
305
306
307
308
309
}

template COOMatrix CSRToCOO<kDLCPU, int32_t>(CSRMatrix csr);
template COOMatrix CSRToCOO<kDLCPU, int64_t>(CSRMatrix csr);

// complexity: time O(NNZ), space O(1)
template <DLDeviceType XPU, typename IdType>
COOMatrix CSRToCOODataAsOrder(CSRMatrix csr) {
  const int64_t N = csr.num_rows;
  const int64_t M = csr.num_cols;
  const int64_t nnz = csr.indices->shape[0];
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  // data array should have the same type as the indices arrays
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
310
  const IdType* data = CSRHasData(csr) ? static_cast<IdType*>(csr.data->data) : nullptr;
311
312
313
314
315
316
317
318
  NDArray ret_row = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  NDArray ret_col = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  IdType* ret_row_data = static_cast<IdType*>(ret_row->data);
  IdType* ret_col_data = static_cast<IdType*>(ret_col->data);
  // scatter using the indices in the data array
  for (IdType row = 0; row < N; ++row) {
    for (IdType j = indptr_data[row]; j < indptr_data[row + 1]; ++j) {
      const IdType col = indices_data[j];
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
319
320
      ret_row_data[data ? data[j] : j] = row;
      ret_col_data[data ? data[j] : j] = col;
321
322
    }
  }
323
  return COOMatrix(N, M, ret_row, ret_col);
324
325
326
327
328
329
330
}

template COOMatrix CSRToCOODataAsOrder<kDLCPU, int32_t>(CSRMatrix csr);
template COOMatrix CSRToCOODataAsOrder<kDLCPU, int64_t>(CSRMatrix csr);

///////////////////////////// CSRSliceRows /////////////////////////////

331
template <DLDeviceType XPU, typename IdType>
332
333
334
335
CSRMatrix CSRSliceRows(CSRMatrix csr, int64_t start, int64_t end) {
  const IdType* indptr = static_cast<IdType*>(csr.indptr->data);
  const int64_t num_rows = end - start;
  const int64_t nnz = indptr[end] - indptr[start];
336
337
  IdArray ret_indptr = IdArray::Empty({num_rows + 1}, csr.indptr->dtype, csr.indices->ctx);
  IdType* r_indptr = static_cast<IdType*>(ret_indptr->data);
338
339
340
341
  for (int64_t i = start; i < end + 1; ++i) {
    r_indptr[i - start] = indptr[i] - indptr[start];
  }
  // indices and data can be view arrays
342
343
344
345
346
347
348
349
350
351
352
  IdArray ret_indices = csr.indices.CreateView(
      {nnz}, csr.indices->dtype, indptr[start] * sizeof(IdType));
  IdArray ret_data;
  if (CSRHasData(csr))
    ret_data = csr.data.CreateView({nnz}, csr.data->dtype, indptr[start] * sizeof(IdType));
  else
    ret_data = aten::Range(indptr[start], indptr[end],
                           csr.indptr->dtype.bits, csr.indptr->ctx);
  return CSRMatrix(num_rows, csr.num_cols,
                   ret_indptr, ret_indices, ret_data,
                   csr.sorted);
353
354
}

355
356
template CSRMatrix CSRSliceRows<kDLCPU, int32_t>(CSRMatrix, int64_t, int64_t);
template CSRMatrix CSRSliceRows<kDLCPU, int64_t>(CSRMatrix, int64_t, int64_t);
357

358
template <DLDeviceType XPU, typename IdType>
359
CSRMatrix CSRSliceRows(CSRMatrix csr, NDArray rows) {
360
  CHECK_SAME_DTYPE(csr.indices, rows);
361
362
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
363
  const IdType* data = CSRHasData(csr)? static_cast<IdType*>(csr.data->data) : nullptr;
364
365
366
367
368
369
370
371
372
373
374
375
376
  const auto len = rows->shape[0];
  const IdType* rows_data = static_cast<IdType*>(rows->data);
  int64_t nnz = 0;
  for (int64_t i = 0; i < len; ++i) {
    IdType vid = rows_data[i];
    nnz += impl::CSRGetRowNNZ<XPU, IdType>(csr, vid);
  }

  CSRMatrix ret;
  ret.num_rows = len;
  ret.num_cols = csr.num_cols;
  ret.indptr = NDArray::Empty({len + 1}, csr.indptr->dtype, csr.indices->ctx);
  ret.indices = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
377
378
  ret.data = NDArray::Empty({nnz}, csr.indptr->dtype, csr.indptr->ctx);
  ret.sorted = csr.sorted;
379
380
381

  IdType* ret_indptr_data = static_cast<IdType*>(ret.indptr->data);
  IdType* ret_indices_data = static_cast<IdType*>(ret.indices->data);
382
  IdType* ret_data = static_cast<IdType*>(ret.data->data);
383
384
385
386
387
388
389
  ret_indptr_data[0] = 0;
  for (int64_t i = 0; i < len; ++i) {
    const IdType rid = rows_data[i];
    // note: zero is allowed
    ret_indptr_data[i + 1] = ret_indptr_data[i] + indptr_data[rid + 1] - indptr_data[rid];
    std::copy(indices_data + indptr_data[rid], indices_data + indptr_data[rid + 1],
              ret_indices_data + ret_indptr_data[i]);
390
391
392
393
394
395
    if (data)
      std::copy(data + indptr_data[rid], data + indptr_data[rid + 1],
                ret_data + ret_indptr_data[i]);
    else
      std::iota(ret_data + ret_indptr_data[i], ret_data + ret_indptr_data[i + 1],
                indptr_data[rid]);
396
397
398
399
  }
  return ret;
}

400
401
template CSRMatrix CSRSliceRows<kDLCPU, int32_t>(CSRMatrix , NDArray);
template CSRMatrix CSRSliceRows<kDLCPU, int64_t>(CSRMatrix , NDArray);
402
403
404

///////////////////////////// CSRSliceMatrix /////////////////////////////

405
template <DLDeviceType XPU, typename IdType>
406
407
408
409
410
CSRMatrix CSRSliceMatrix(CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols) {
  IdHashMap<IdType> hashmap(cols);
  const int64_t new_nrows = rows->shape[0];
  const int64_t new_ncols = cols->shape[0];
  const IdType* rows_data = static_cast<IdType*>(rows->data);
411
  const bool has_data = CSRHasData(csr);
412
413
414

  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
415
  const IdType* data = has_data? static_cast<IdType*>(csr.data->data) : nullptr;
416
417

  std::vector<IdType> sub_indptr, sub_indices;
418
  std::vector<IdType> sub_data;
419
420
421
422
423
424
425
426
427
428
429
430
  sub_indptr.resize(new_nrows + 1, 0);
  const IdType kInvalidId = new_ncols + 1;
  for (int64_t i = 0; i < new_nrows; ++i) {
    // NOTE: newi == i
    const IdType oldi = rows_data[i];
    CHECK(oldi >= 0 && oldi < csr.num_rows) << "Invalid row index: " << oldi;
    for (IdType p = indptr_data[oldi]; p < indptr_data[oldi + 1]; ++p) {
      const IdType oldj = indices_data[p];
      const IdType newj = hashmap.Map(oldj, kInvalidId);
      if (newj != kInvalidId) {
        ++sub_indptr[i];
        sub_indices.push_back(newj);
431
        sub_data.push_back(has_data? data[p] : p);
432
433
434
435
436
437
438
439
440
441
442
443
444
      }
    }
  }

  // cumsum sub_indptr
  for (int64_t i = 0, cumsum = 0; i < new_nrows; ++i) {
    const IdType temp = sub_indptr[i];
    sub_indptr[i] = cumsum;
    cumsum += temp;
  }
  sub_indptr[new_nrows] = sub_indices.size();

  const int64_t nnz = sub_data.size();
445
446
  NDArray sub_data_arr = NDArray::Empty({nnz}, csr.indptr->dtype, csr.indptr->ctx);
  IdType* ptr = static_cast<IdType*>(sub_data_arr->data);
447
448
  std::copy(sub_data.begin(), sub_data.end(), ptr);
  return CSRMatrix{new_nrows, new_ncols,
449
450
    NDArray::FromVector(sub_indptr, csr.indptr->ctx),
    NDArray::FromVector(sub_indices, csr.indptr->ctx),
451
452
453
    sub_data_arr};
}

454
template CSRMatrix CSRSliceMatrix<kDLCPU, int32_t>(
455
    CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);
456
template CSRMatrix CSRSliceMatrix<kDLCPU, int64_t>(
457
458
    CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);

Da Zheng's avatar
Da Zheng committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
///////////////////////////// CSRReorder /////////////////////////////

template <DLDeviceType XPU, typename IdType>
CSRMatrix CSRReorder(CSRMatrix csr, runtime::NDArray new_row_id_arr,
                     runtime::NDArray new_col_id_arr) {
  CHECK_SAME_DTYPE(csr.indices, new_row_id_arr);
  CHECK_SAME_DTYPE(csr.indices, new_col_id_arr);

  // Input CSR
  const IdType* in_indptr = static_cast<IdType*>(csr.indptr->data);
  const IdType* in_indices = static_cast<IdType*>(csr.indices->data);
  const IdType* in_data = static_cast<IdType*>(csr.data->data);
  int64_t num_rows = csr.num_rows;
  int64_t num_cols = csr.num_cols;
  int64_t nnz = csr.indices->shape[0];
  CHECK_EQ(nnz, in_indptr[num_rows]);
  CHECK_EQ(num_rows, new_row_id_arr->shape[0])
      << "The new row Id array needs to be the same as the number of rows of CSR";
  CHECK_EQ(num_cols, new_col_id_arr->shape[0])
      << "The new col Id array needs to be the same as the number of cols of CSR";

  // New row/col Ids.
  const IdType* new_row_ids = static_cast<IdType*>(new_row_id_arr->data);
  const IdType* new_col_ids = static_cast<IdType*>(new_col_id_arr->data);

  // Output CSR
  NDArray out_indptr_arr = NDArray::Empty({num_rows + 1}, csr.indptr->dtype, csr.indptr->ctx);
  NDArray out_indices_arr = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  NDArray out_data_arr = NDArray::Empty({nnz}, csr.data->dtype, csr.data->ctx);
  IdType *out_indptr = static_cast<IdType*>(out_indptr_arr->data);
  IdType *out_indices = static_cast<IdType*>(out_indices_arr->data);
  IdType *out_data = static_cast<IdType*>(out_data_arr->data);

  // Compute the length of rows for the new matrix.
  std::vector<IdType> new_row_lens(num_rows, -1);
#pragma omp parallel for
  for (int64_t i = 0; i < num_rows; i++) {
    int64_t new_row_id = new_row_ids[i];
    new_row_lens[new_row_id] = in_indptr[i + 1] - in_indptr[i];
  }
  // Compute the starting location of each row in the new matrix.
  out_indptr[0] = 0;
  // This is sequential. It should be pretty fast.
  for (int64_t i = 0; i < num_rows; i++) {
    CHECK_GE(new_row_lens[i], 0);
    out_indptr[i + 1] = out_indptr[i] + new_row_lens[i];
  }
  CHECK_EQ(out_indptr[num_rows], nnz);
  // Copy indieces and data with the new order.
  // Here I iterate rows in the order of the old matrix.
#pragma omp parallel for
  for (int64_t i = 0; i < num_rows; i++) {
    const IdType *in_row = in_indices + in_indptr[i];
    const IdType *in_row_data = in_data + in_indptr[i];

    int64_t new_row_id = new_row_ids[i];
    IdType *out_row = out_indices + out_indptr[new_row_id];
    IdType *out_row_data = out_data + out_indptr[new_row_id];

    int64_t row_len = new_row_lens[new_row_id];
    // Here I iterate col indices in a row in the order of the old matrix.
    for (int64_t j = 0; j < row_len; j++) {
      out_row[j] = new_col_ids[in_row[j]];
      out_row_data[j] = in_row_data[j];
    }
    // TODO(zhengda) maybe we should sort the column indices.
  }
  return CSRMatrix(num_rows, num_cols,
    out_indptr_arr, out_indices_arr, out_data_arr);
}

template CSRMatrix CSRReorder<kDLCPU, int64_t>(CSRMatrix csr, runtime::NDArray new_row_ids,
                                               runtime::NDArray new_col_ids);
template CSRMatrix CSRReorder<kDLCPU, int32_t>(CSRMatrix csr, runtime::NDArray new_row_ids,
                                               runtime::NDArray new_col_ids);

535
536
537
}  // namespace impl
}  // namespace aten
}  // namespace dgl