cuda_to_block.cu 13.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
/*!
 *  Copyright 2020-2021 Contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 * \file graph/transform/cuda/cuda_to_block.cu
 * \brief Functions to convert a set of edges into a graph block with local
 * ids.
 */


#include <dgl/runtime/device_api.h>
#include <dgl/immutable_graph.h>
#include <hip/hip_runtime.h>
#include <utility>
#include <algorithm>
#include <memory>

#include "../../../runtime/cuda/cuda_common.h"
#include "../../heterograph.h"
#include "../to_bipartite.h"
#include "cuda_map_edges.cuh"

using namespace dgl::aten;
using namespace dgl::runtime::cuda;
using namespace dgl::transform::cuda;

namespace dgl {
namespace transform {

namespace {

template<typename IdType>
class DeviceNodeMapMaker {
 public:
  DeviceNodeMapMaker(
      const std::vector<int64_t>& maxNodesPerType) :
      max_num_nodes_(0) {
    max_num_nodes_ = *std::max_element(maxNodesPerType.begin(),
        maxNodesPerType.end());
  }

  /**
  * \brief This function builds node maps for each node type, preserving the
  * order of the input nodes. Here it is assumed the lhs_nodes are not unique,
  * and thus a unique list is generated.
  *
  * \param lhs_nodes The set of source input nodes.
  * \param rhs_nodes The set of destination input nodes.
  * \param node_maps The node maps to be constructed.
  * \param count_lhs_device The number of unique source nodes (on the GPU).
  * \param lhs_device The unique source nodes (on the GPU).
  * \param stream The stream to operate on.
  */
  void Make(
      const std::vector<IdArray>& lhs_nodes,
      const std::vector<IdArray>& rhs_nodes,
      DeviceNodeMap<IdType> * const node_maps,
      int64_t * const count_lhs_device,
      std::vector<IdArray>* const lhs_device,
      hipStream_t stream) {
    const int64_t num_ntypes = lhs_nodes.size() + rhs_nodes.size();

    CUDA_CALL(hipMemsetAsync(
      count_lhs_device,
      0,
      num_ntypes*sizeof(*count_lhs_device),
      stream));

    // possibly dublicate lhs nodes
    const int64_t lhs_num_ntypes = static_cast<int64_t>(lhs_nodes.size());
    for (int64_t ntype = 0; ntype < lhs_num_ntypes; ++ntype) {
      const IdArray& nodes = lhs_nodes[ntype];
      if (nodes->shape[0] > 0) {
lisj's avatar
lisj committed
85
        CHECK_EQ(nodes->ctx.device_type, kDLROCM);
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        node_maps->LhsHashTable(ntype).FillWithDuplicates(
            nodes.Ptr<IdType>(),
            nodes->shape[0],
            (*lhs_device)[ntype].Ptr<IdType>(),
            count_lhs_device+ntype,
            stream);
      }
    }

    // unique rhs nodes
    const int64_t rhs_num_ntypes = static_cast<int64_t>(rhs_nodes.size());
    for (int64_t ntype = 0; ntype < rhs_num_ntypes; ++ntype) {
      const IdArray& nodes = rhs_nodes[ntype];
      if (nodes->shape[0] > 0) {
        node_maps->RhsHashTable(ntype).FillWithUnique(
            nodes.Ptr<IdType>(),
            nodes->shape[0],
            stream);
      }
    }
  }

  /**
  * \brief This function builds node maps for each node type, preserving the
  * order of the input nodes. Here it is assumed both lhs_nodes and rhs_nodes
  * are unique.
  *
  * \param lhs_nodes The set of source input nodes.
  * \param rhs_nodes The set of destination input nodes.
  * \param node_maps The node maps to be constructed.
  * \param stream The stream to operate on.
  */
  void Make(
      const std::vector<IdArray>& lhs_nodes,
      const std::vector<IdArray>& rhs_nodes,
      DeviceNodeMap<IdType> * const node_maps,
      hipStream_t stream) {
    const int64_t num_ntypes = lhs_nodes.size() + rhs_nodes.size();

    // unique lhs nodes
    const int64_t lhs_num_ntypes = static_cast<int64_t>(lhs_nodes.size());
    for (int64_t ntype = 0; ntype < lhs_num_ntypes; ++ntype) {
      const IdArray& nodes = lhs_nodes[ntype];
      if (nodes->shape[0] > 0) {
lisj's avatar
lisj committed
130
        CHECK_EQ(nodes->ctx.device_type, kDLROCM);
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        node_maps->LhsHashTable(ntype).FillWithUnique(
            nodes.Ptr<IdType>(),
            nodes->shape[0],
            stream);
      }
    }

    // unique rhs nodes
    const int64_t rhs_num_ntypes = static_cast<int64_t>(rhs_nodes.size());
    for (int64_t ntype = 0; ntype < rhs_num_ntypes; ++ntype) {
      const IdArray& nodes = rhs_nodes[ntype];
      if (nodes->shape[0] > 0) {
        node_maps->RhsHashTable(ntype).FillWithUnique(
            nodes.Ptr<IdType>(),
            nodes->shape[0],
            stream);
      }
    }
  }

 private:
  IdType max_num_nodes_;
};


// Since partial specialization is not allowed for functions, use this as an
lisj's avatar
lisj committed
157
// intermediate for ToBlock where XPU = kDLROCM.
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
template<typename IdType>
std::tuple<HeteroGraphPtr, std::vector<IdArray>>
ToBlockGPU(
    HeteroGraphPtr graph,
    const std::vector<IdArray> &rhs_nodes,
    const bool include_rhs_in_lhs,
    std::vector<IdArray>* const lhs_nodes_ptr) {
  std::vector<IdArray>& lhs_nodes = *lhs_nodes_ptr;
  const bool generate_lhs_nodes = lhs_nodes.empty();


  const auto& ctx = graph->Context();
  auto device = runtime::DeviceAPI::Get(ctx);
  hipStream_t stream = runtime::getCurrentCUDAStream();

lisj's avatar
lisj committed
173
  CHECK_EQ(ctx.device_type, kDLROCM);
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
  for (const auto& nodes : rhs_nodes) {
    CHECK_EQ(ctx.device_type, nodes->ctx.device_type);
  }

  // Since DST nodes are included in SRC nodes, a common requirement is to fetch
  // the DST node features from the SRC nodes features. To avoid expensive sparse lookup,
  // the function assures that the DST nodes in both SRC and DST sets have the same ids.
  // As a result, given the node feature tensor ``X`` of type ``utype``,
  // the following code finds the corresponding DST node features of type ``vtype``:

  const int64_t num_etypes = graph->NumEdgeTypes();
  const int64_t num_ntypes = graph->NumVertexTypes();

  CHECK(rhs_nodes.size() == static_cast<size_t>(num_ntypes))
    << "rhs_nodes not given for every node type";

  std::vector<EdgeArray> edge_arrays(num_etypes);
  for (int64_t etype = 0; etype < num_etypes; ++etype) {
    const auto src_dst_types = graph->GetEndpointTypes(etype);
    const dgl_type_t dsttype = src_dst_types.second;
    if (!aten::IsNullArray(rhs_nodes[dsttype])) {
      edge_arrays[etype] = graph->Edges(etype);
    }
  }

  // count lhs and rhs nodes
  std::vector<int64_t> maxNodesPerType(num_ntypes*2, 0);
  for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
    maxNodesPerType[ntype+num_ntypes] += rhs_nodes[ntype]->shape[0];

    if (generate_lhs_nodes) {
      if (include_rhs_in_lhs) {
        maxNodesPerType[ntype] += rhs_nodes[ntype]->shape[0];
      }
    } else {
      maxNodesPerType[ntype] += lhs_nodes[ntype]->shape[0];
    }
  }
  if (generate_lhs_nodes) {
    // we don't have lhs_nodes, see we need to count inbound edges to get an
    // upper bound
    for (int64_t etype = 0; etype < num_etypes; ++etype) {
      const auto src_dst_types = graph->GetEndpointTypes(etype);
      const dgl_type_t srctype = src_dst_types.first;
      if (edge_arrays[etype].src.defined()) {
        maxNodesPerType[srctype] += edge_arrays[etype].src->shape[0];
      }
    }
  }

  // gather lhs_nodes
  std::vector<IdArray> src_nodes(num_ntypes);
  if (generate_lhs_nodes) {
    std::vector<int64_t> src_node_offsets(num_ntypes, 0);
    for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
      src_nodes[ntype] = NewIdArray(maxNodesPerType[ntype], ctx,
          sizeof(IdType)*8);
      if (include_rhs_in_lhs) {
        // place rhs nodes first
        device->CopyDataFromTo(rhs_nodes[ntype].Ptr<IdType>(), 0,
            src_nodes[ntype].Ptr<IdType>(), src_node_offsets[ntype],
            sizeof(IdType)*rhs_nodes[ntype]->shape[0],
            rhs_nodes[ntype]->ctx, src_nodes[ntype]->ctx,
            rhs_nodes[ntype]->dtype);
        src_node_offsets[ntype] += sizeof(IdType)*rhs_nodes[ntype]->shape[0];
      }
    }
    for (int64_t etype = 0; etype < num_etypes; ++etype) {
      const auto src_dst_types = graph->GetEndpointTypes(etype);
      const dgl_type_t srctype = src_dst_types.first;
      if (edge_arrays[etype].src.defined()) {
        device->CopyDataFromTo(
            edge_arrays[etype].src.Ptr<IdType>(), 0,
            src_nodes[srctype].Ptr<IdType>(),
            src_node_offsets[srctype],
            sizeof(IdType)*edge_arrays[etype].src->shape[0],
            rhs_nodes[srctype]->ctx,
            src_nodes[srctype]->ctx,
            rhs_nodes[srctype]->dtype);

        src_node_offsets[srctype] += sizeof(IdType)*edge_arrays[etype].src->shape[0];
      }
    }
  } else {
    for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
      src_nodes[ntype] = lhs_nodes[ntype];
    }
  }

  // allocate space for map creation process
  DeviceNodeMapMaker<IdType> maker(maxNodesPerType);
  DeviceNodeMap<IdType> node_maps(maxNodesPerType, num_ntypes, ctx, stream);

  if (generate_lhs_nodes) {
    lhs_nodes.reserve(num_ntypes);
    for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
      lhs_nodes.emplace_back(NewIdArray(
          maxNodesPerType[ntype], ctx, sizeof(IdType)*8));
    }
  }

  std::vector<int64_t> num_nodes_per_type(num_ntypes*2);
  // populate RHS nodes from what we already know
  for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
    num_nodes_per_type[num_ntypes+ntype] = rhs_nodes[ntype]->shape[0];
  }

  // populate the mappings
  if (generate_lhs_nodes) {
    int64_t * count_lhs_device = static_cast<int64_t*>(
        device->AllocWorkspace(ctx, sizeof(int64_t)*num_ntypes*2));

    maker.Make(
        src_nodes,
        rhs_nodes,
        &node_maps,
        count_lhs_device,
        &lhs_nodes,
        stream);

    device->CopyDataFromTo(
        count_lhs_device, 0,
        num_nodes_per_type.data(), 0,
        sizeof(*num_nodes_per_type.data())*num_ntypes,
        ctx,
        DGLContext{kDLCPU, 0},
        DGLType{kDLInt, 64, 1});
    device->StreamSync(ctx, stream);

    // wait for the node counts to finish transferring
    device->FreeWorkspace(ctx, count_lhs_device);
  } else {
    maker.Make(
        lhs_nodes,
        rhs_nodes,
        &node_maps,
        stream);

    for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
      num_nodes_per_type[ntype] = lhs_nodes[ntype]->shape[0];
    }
  }

  std::vector<IdArray> induced_edges;
  induced_edges.reserve(num_etypes);
  for (int64_t etype = 0; etype < num_etypes; ++etype) {
    if (edge_arrays[etype].id.defined()) {
      induced_edges.push_back(edge_arrays[etype].id);
    } else {
      induced_edges.push_back(
            aten::NullArray(DLDataType{kDLInt, sizeof(IdType)*8, 1}, ctx));
    }
  }

  // build metagraph -- small enough to be done on CPU
  const auto meta_graph = graph->meta_graph();
  const EdgeArray etypes = meta_graph->Edges("eid");
  const IdArray new_dst = Add(etypes.dst, num_ntypes);
  const auto new_meta_graph = ImmutableGraph::CreateFromCOO(
      num_ntypes * 2, etypes.src, new_dst);

  // allocate vector for graph relations while GPU is busy
  std::vector<HeteroGraphPtr> rel_graphs;
  rel_graphs.reserve(num_etypes);

  // map node numberings from global to local, and build pointer for CSR
  std::vector<IdArray> new_lhs;
  std::vector<IdArray> new_rhs;
  std::tie(new_lhs, new_rhs) = MapEdges(graph, edge_arrays, node_maps, stream);

  // resize lhs nodes
  if (generate_lhs_nodes) {
    for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
      lhs_nodes[ntype]->shape[0] = num_nodes_per_type[ntype];
    }
  }

  // build the heterograph
  for (int64_t etype = 0; etype < num_etypes; ++etype) {
    const auto src_dst_types = graph->GetEndpointTypes(etype);
    const dgl_type_t srctype = src_dst_types.first;
    const dgl_type_t dsttype = src_dst_types.second;

    if (rhs_nodes[dsttype]->shape[0] == 0) {
      // No rhs nodes are given for this edge type. Create an empty graph.
      rel_graphs.push_back(CreateFromCOO(
          2, lhs_nodes[srctype]->shape[0], rhs_nodes[dsttype]->shape[0],
          aten::NullArray(DLDataType{kDLInt, sizeof(IdType)*8, 1}, ctx),
          aten::NullArray(DLDataType{kDLInt, sizeof(IdType)*8, 1}, ctx)));
    } else {
      rel_graphs.push_back(CreateFromCOO(
          2,
          lhs_nodes[srctype]->shape[0],
          rhs_nodes[dsttype]->shape[0],
          new_lhs[etype],
          new_rhs[etype]));
    }
  }

  HeteroGraphPtr new_graph = CreateHeteroGraph(
      new_meta_graph, rel_graphs, num_nodes_per_type);

  // return the new graph, the new src nodes, and new edges
  return std::make_tuple(new_graph, induced_edges);
}

}  // namespace

// Use explicit names to get around MSVC's broken mangling that thinks the following two
// functions are the same.
// Using template<> fails to export the symbols.
std::tuple<HeteroGraphPtr, std::vector<IdArray>>
lisj's avatar
lisj committed
386
// ToBlock<kDLROCM, int32_t>
387
388
389
390
391
392
393
394
395
ToBlockGPU32(
    HeteroGraphPtr graph,
    const std::vector<IdArray> &rhs_nodes,
    bool include_rhs_in_lhs,
    std::vector<IdArray>* const lhs_nodes) {
  return ToBlockGPU<int32_t>(graph, rhs_nodes, include_rhs_in_lhs, lhs_nodes);
}

std::tuple<HeteroGraphPtr, std::vector<IdArray>>
lisj's avatar
lisj committed
396
// ToBlock<kDLROCM, int64_t>
397
398
399
400
401
402
403
404
405
406
ToBlockGPU64(
    HeteroGraphPtr graph,
    const std::vector<IdArray> &rhs_nodes,
    bool include_rhs_in_lhs,
    std::vector<IdArray>* const lhs_nodes) {
  return ToBlockGPU<int64_t>(graph, rhs_nodes, include_rhs_in_lhs, lhs_nodes);
}

}  // namespace transform
}  // namespace dgl