spmat_op_impl_csr.cu 18.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include "hip/hip_runtime.h"
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/cuda/spmat_op_impl_csr.cu
 * \brief CSR operator CPU implementation
 */
#include <dgl/array.h>
#include <vector>
#include <unordered_set>
#include <numeric>
#include "../../runtime/cuda/cuda_common.h"
#include "./utils.h"
#include "./atomic.cuh"
#include "./dgl_cub.cuh"

namespace dgl {

using runtime::NDArray;

namespace aten {
namespace impl {

///////////////////////////// CSRIsNonZero /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool CSRIsNonZero(CSRMatrix csr, int64_t row, int64_t col) {
  hipStream_t stream = runtime::getCurrentCUDAStream();
  const auto& ctx = csr.indptr->ctx;
  IdArray rows = aten::VecToIdArray<int64_t>({row}, sizeof(IdType) * 8, ctx);
  IdArray cols = aten::VecToIdArray<int64_t>({col}, sizeof(IdType) * 8, ctx);
  rows = rows.CopyTo(ctx);
  cols = cols.CopyTo(ctx);
  IdArray out = aten::NewIdArray(1, ctx, sizeof(IdType) * 8);
  const IdType* data = nullptr;
  // TODO(minjie): use binary search for sorted csr
  CUDA_KERNEL_CALL(dgl::cuda::_LinearSearchKernel,
      1, 1, 0, stream,
      csr.indptr.Ptr<IdType>(), csr.indices.Ptr<IdType>(), data,
      rows.Ptr<IdType>(), cols.Ptr<IdType>(),
      1, 1, 1,
      static_cast<IdType*>(nullptr), static_cast<IdType>(-1), out.Ptr<IdType>());
  out = out.CopyTo(DLContext{kDLCPU, 0});
  return *out.Ptr<IdType>() != -1;
}

lisj's avatar
lisj committed
46
47
template bool CSRIsNonZero<kDLROCM, int32_t>(CSRMatrix, int64_t, int64_t);
template bool CSRIsNonZero<kDLROCM, int64_t>(CSRMatrix, int64_t, int64_t);
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

template <DLDeviceType XPU, typename IdType>
NDArray CSRIsNonZero(CSRMatrix csr, NDArray row, NDArray col) {
  const auto rowlen = row->shape[0];
  const auto collen = col->shape[0];
  const auto rstlen = std::max(rowlen, collen);
  NDArray rst = NDArray::Empty({rstlen}, row->dtype, row->ctx);
  if (rstlen == 0)
    return rst;
  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  hipStream_t stream = runtime::getCurrentCUDAStream();
  const int nt = dgl::cuda::FindNumThreads(rstlen);
  const int nb = (rstlen + nt - 1) / nt;
  const IdType* data = nullptr;
  // TODO(minjie): use binary search for sorted csr
  CUDA_KERNEL_CALL(dgl::cuda::_LinearSearchKernel,
      nb, nt, 0, stream,
      csr.indptr.Ptr<IdType>(), csr.indices.Ptr<IdType>(), data,
      row.Ptr<IdType>(), col.Ptr<IdType>(),
      row_stride, col_stride, rstlen,
      static_cast<IdType*>(nullptr), static_cast<IdType>(-1), rst.Ptr<IdType>());
  return rst != -1;
}

lisj's avatar
lisj committed
73
74
template NDArray CSRIsNonZero<kDLROCM, int32_t>(CSRMatrix, NDArray, NDArray);
template NDArray CSRIsNonZero<kDLROCM, int64_t>(CSRMatrix, NDArray, NDArray);
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

///////////////////////////// CSRHasDuplicate /////////////////////////////

/*!
 * \brief Check whether each row does not have any duplicate entries.
 * Assume the CSR is sorted.
 */
template <typename IdType>
__global__ void _SegmentHasNoDuplicate(
    const IdType* indptr, const IdType* indices,
    int64_t num_rows, int8_t* flags) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  const int stride_x = gridDim.x * blockDim.x;
  while (tx < num_rows) {
    bool f = true;
    for (IdType i = indptr[tx] + 1; f && i < indptr[tx + 1]; ++i) {
      f = (indices[i - 1] != indices[i]);
    }
    flags[tx] = static_cast<int8_t>(f);
    tx += stride_x;
  }
}


template <DLDeviceType XPU, typename IdType>
bool CSRHasDuplicate(CSRMatrix csr) {
  if (!csr.sorted)
    csr = CSRSort(csr);
  const auto& ctx = csr.indptr->ctx;
  hipStream_t stream = runtime::getCurrentCUDAStream();
  auto device = runtime::DeviceAPI::Get(ctx);
  // We allocate a workspace of num_rows bytes. It wastes a little bit memory but should
  // be fine.
  int8_t* flags = static_cast<int8_t*>(device->AllocWorkspace(ctx, csr.num_rows));
  const int nt = dgl::cuda::FindNumThreads(csr.num_rows);
  const int nb = (csr.num_rows + nt - 1) / nt;
  CUDA_KERNEL_CALL(_SegmentHasNoDuplicate,
      nb, nt, 0, stream,
      csr.indptr.Ptr<IdType>(), csr.indices.Ptr<IdType>(),
      csr.num_rows, flags);
  bool ret = dgl::cuda::AllTrue(flags, csr.num_rows, ctx);
  device->FreeWorkspace(ctx, flags);
  return !ret;
}

lisj's avatar
lisj committed
120
121
template bool CSRHasDuplicate<kDLROCM, int32_t>(CSRMatrix csr);
template bool CSRHasDuplicate<kDLROCM, int64_t>(CSRMatrix csr);
122
123
124
125
126
127
128
129
130
131

///////////////////////////// CSRGetRowNNZ /////////////////////////////

template <DLDeviceType XPU, typename IdType>
int64_t CSRGetRowNNZ(CSRMatrix csr, int64_t row) {
  const IdType cur = aten::IndexSelect<IdType>(csr.indptr, row);
  const IdType next = aten::IndexSelect<IdType>(csr.indptr, row + 1);
  return next - cur;
}

lisj's avatar
lisj committed
132
133
template int64_t CSRGetRowNNZ<kDLROCM, int32_t>(CSRMatrix, int64_t);
template int64_t CSRGetRowNNZ<kDLROCM, int64_t>(CSRMatrix, int64_t);
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

template <typename IdType>
__global__ void _CSRGetRowNNZKernel(
    const IdType* vid,
    const IdType* indptr,
    IdType* out,
    int64_t length) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
    const IdType vv = vid[tx];
    out[tx] = indptr[vv + 1] - indptr[vv];
    tx += stride_x;
  }
}

template <DLDeviceType XPU, typename IdType>
NDArray CSRGetRowNNZ(CSRMatrix csr, NDArray rows) {
  hipStream_t stream = runtime::getCurrentCUDAStream();
  const auto len = rows->shape[0];
  const IdType* vid_data = static_cast<IdType*>(rows->data);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  NDArray rst = NDArray::Empty({len}, rows->dtype, rows->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
  const int nt = dgl::cuda::FindNumThreads(len);
  const int nb = (len + nt - 1) / nt;
  CUDA_KERNEL_CALL(_CSRGetRowNNZKernel,
      nb, nt, 0, stream,
      vid_data, indptr_data, rst_data, len);
  return rst;
}

lisj's avatar
lisj committed
166
167
template NDArray CSRGetRowNNZ<kDLROCM, int32_t>(CSRMatrix, NDArray);
template NDArray CSRGetRowNNZ<kDLROCM, int64_t>(CSRMatrix, NDArray);
168
169
170
171
172
173
174
175
176
177

///////////////////////////// CSRGetRowColumnIndices /////////////////////////////

template <DLDeviceType XPU, typename IdType>
NDArray CSRGetRowColumnIndices(CSRMatrix csr, int64_t row) {
  const int64_t len = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  const int64_t offset = aten::IndexSelect<IdType>(csr.indptr, row) * sizeof(IdType);
  return csr.indices.CreateView({len}, csr.indices->dtype, offset);
}

lisj's avatar
lisj committed
178
179
template NDArray CSRGetRowColumnIndices<kDLROCM, int32_t>(CSRMatrix, int64_t);
template NDArray CSRGetRowColumnIndices<kDLROCM, int64_t>(CSRMatrix, int64_t);
180
181
182
183
184
185
186
187
188
189
190
191
192

///////////////////////////// CSRGetRowData /////////////////////////////

template <DLDeviceType XPU, typename IdType>
NDArray CSRGetRowData(CSRMatrix csr, int64_t row) {
  const int64_t len = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  const int64_t offset = aten::IndexSelect<IdType>(csr.indptr, row) * sizeof(IdType);
  if (aten::CSRHasData(csr))
    return csr.data.CreateView({len}, csr.data->dtype, offset);
  else
    return aten::Range(offset, offset + len, csr.indptr->dtype.bits, csr.indptr->ctx);
}

lisj's avatar
lisj committed
193
194
template NDArray CSRGetRowData<kDLROCM, int32_t>(CSRMatrix, int64_t);
template NDArray CSRGetRowData<kDLROCM, int64_t>(CSRMatrix, int64_t);
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

///////////////////////////// CSRSliceRows /////////////////////////////

template <DLDeviceType XPU, typename IdType>
CSRMatrix CSRSliceRows(CSRMatrix csr, int64_t start, int64_t end) {
  const int64_t num_rows = end - start;
  const IdType st_pos = aten::IndexSelect<IdType>(csr.indptr, start);
  const IdType ed_pos = aten::IndexSelect<IdType>(csr.indptr, end);
  const IdType nnz = ed_pos - st_pos;
  IdArray ret_indptr = aten::IndexSelect(csr.indptr, start, end + 1) - st_pos;
  // indices and data can be view arrays
  IdArray ret_indices = csr.indices.CreateView(
      {nnz}, csr.indices->dtype, st_pos * sizeof(IdType));
  IdArray ret_data;
  if (CSRHasData(csr))
    ret_data = csr.data.CreateView({nnz}, csr.data->dtype, st_pos * sizeof(IdType));
  else
    ret_data = aten::Range(st_pos, ed_pos,
                           csr.indptr->dtype.bits, csr.indptr->ctx);
  return CSRMatrix(num_rows, csr.num_cols,
                   ret_indptr, ret_indices, ret_data,
                   csr.sorted);
}

lisj's avatar
lisj committed
219
220
template CSRMatrix CSRSliceRows<kDLROCM, int32_t>(CSRMatrix, int64_t, int64_t);
template CSRMatrix CSRSliceRows<kDLROCM, int64_t>(CSRMatrix, int64_t, int64_t);
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

/*!
 * \brief Copy data segment to output buffers
 * 
 * For the i^th row r = row[i], copy the data from indptr[r] ~ indptr[r+1]
 * to the out_data from out_indptr[i] ~ out_indptr[i+1]
 *
 * If the provided `data` array is nullptr, write the read index to the out_data.
 *
 */
template <typename IdType, typename DType>
__global__ void _SegmentCopyKernel(
    const IdType* indptr, const DType* data,
    const IdType* row, int64_t length, int64_t n_row,
    const IdType* out_indptr, DType* out_data) {
  IdType tx = static_cast<IdType>(blockIdx.x) * blockDim.x + threadIdx.x;
  const int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
    IdType rpos = dgl::cuda::_UpperBound(out_indptr, n_row, tx) - 1;
    IdType rofs = tx - out_indptr[rpos];
    const IdType u = row[rpos];
    out_data[tx] = data? data[indptr[u]+rofs] : indptr[u]+rofs;
    tx += stride_x;
  }
}

template <DLDeviceType XPU, typename IdType>
CSRMatrix CSRSliceRows(CSRMatrix csr, NDArray rows) {
  hipStream_t stream = runtime::getCurrentCUDAStream();
  const int64_t len = rows->shape[0];
  IdArray ret_indptr = aten::CumSum(aten::CSRGetRowNNZ(csr, rows), true);
  const int64_t nnz = aten::IndexSelect<IdType>(ret_indptr, len);

  const int nt = 256;  // for better GPU usage of small invocations
  const int nb = (nnz + nt - 1) / nt;

  // Copy indices.
  IdArray ret_indices = NDArray::Empty({nnz}, csr.indptr->dtype, rows->ctx);
  CUDA_KERNEL_CALL(_SegmentCopyKernel,
      nb, nt, 0, stream,
      csr.indptr.Ptr<IdType>(), csr.indices.Ptr<IdType>(),
      rows.Ptr<IdType>(), nnz, len,
      ret_indptr.Ptr<IdType>(), ret_indices.Ptr<IdType>());
  // Copy data.
  IdArray ret_data = NDArray::Empty({nnz}, csr.indptr->dtype, rows->ctx);
  CUDA_KERNEL_CALL(_SegmentCopyKernel,
      nb, nt, 0, stream,
      csr.indptr.Ptr<IdType>(), CSRHasData(csr)? csr.data.Ptr<IdType>() : nullptr,
      rows.Ptr<IdType>(), nnz, len,
      ret_indptr.Ptr<IdType>(), ret_data.Ptr<IdType>());
  return CSRMatrix(len, csr.num_cols,
                   ret_indptr, ret_indices, ret_data,
                   csr.sorted);
}

lisj's avatar
lisj committed
276
277
template CSRMatrix CSRSliceRows<kDLROCM, int32_t>(CSRMatrix , NDArray);
template CSRMatrix CSRSliceRows<kDLROCM, int64_t>(CSRMatrix , NDArray);
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

///////////////////////////// CSRGetDataAndIndices /////////////////////////////

/*!
 * \brief Generate a 0-1 mask for each index that hits the provided (row, col)
 *        index.
 * 
 * Examples:
 * Given a CSR matrix (with duplicate entries) as follows:
 * [[0, 1, 2, 0, 0],
 *  [1, 0, 0, 0, 0],
 *  [0, 0, 1, 1, 0],
 *  [0, 0, 0, 0, 0]]
 * Given rows: [0, 1], cols: [0, 2, 3]
 * The result mask is: [0, 1, 1, 1, 0, 0]
 */
template <typename IdType>
__global__ void _SegmentMaskKernel(
    const IdType* indptr, const IdType* indices,
    const IdType* row, const IdType* col,
    int64_t row_stride, int64_t col_stride,
    int64_t length, IdType* mask) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  const int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
    int rpos = tx * row_stride, cpos = tx * col_stride;
    const IdType r = row[rpos], c = col[cpos];
    for (IdType i = indptr[r]; i < indptr[r + 1]; ++i) {
      if (indices[i] == c) {
        mask[i] = 1;
      }
    }
    tx += stride_x;
  }
}

/*!
 * \brief Search for the insertion positions for needle in the hay.
 *
 * The hay is a list of sorted elements and the result is the insertion position
 * of each needle so that the insertion still gives sorted order.
 *
 * It essentially perform binary search to find lower bound for each needle
 * elements. Require the largest elements in the hay is larger than the given
 * needle elements. Commonly used in searching for row IDs of a given set of
 * coordinates.
 */
template <typename IdType>
__global__ void _SortedSearchKernel(
    const IdType* hay, int64_t hay_size,
    const IdType* needles, int64_t num_needles,
    IdType* pos) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  const int stride_x = gridDim.x * blockDim.x;
  while (tx < num_needles) {
    const IdType ele = needles[tx];
    // binary search
    IdType lo = 0, hi = hay_size - 1;
    while (lo < hi) {
      IdType mid = (lo + hi) >> 1;
      if (hay[mid] <= ele) {
        lo = mid + 1;
      } else {
        hi = mid;
      }
    }
    pos[tx] = (hay[hi] == ele)? hi : hi - 1;
    tx += stride_x;
  }
}

template <DLDeviceType XPU, typename IdType>
std::vector<NDArray> CSRGetDataAndIndices(CSRMatrix csr, NDArray row, NDArray col) {
  const auto rowlen = row->shape[0];
  const auto collen = col->shape[0];
  const auto len = std::max(rowlen, collen);
  if (len == 0)
    return {NullArray(), NullArray(), NullArray()};

  const auto& ctx = row->ctx;
  const auto nbits = row->dtype.bits;
  const int64_t nnz = csr.indices->shape[0];
  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  hipStream_t stream = runtime::getCurrentCUDAStream();

  // Generate a 0-1 mask for matched (row, col) positions.
  IdArray mask = Full(0, nnz, nbits, ctx);
  const int nt = dgl::cuda::FindNumThreads(len);
  const int nb = (len + nt - 1) / nt;
  CUDA_KERNEL_CALL(_SegmentMaskKernel,
      nb, nt, 0, stream,
      csr.indptr.Ptr<IdType>(), csr.indices.Ptr<IdType>(),
      row.Ptr<IdType>(), col.Ptr<IdType>(),
      row_stride, col_stride, len,
      mask.Ptr<IdType>());

  IdArray idx = AsNumBits(NonZero(mask), nbits);
  if (idx->shape[0] == 0)
    // No data. Return three empty arrays.
    return {idx, idx, idx};

  // Search for row index
  IdArray ret_row = NewIdArray(idx->shape[0], ctx, nbits);
  const int nt2 = dgl::cuda::FindNumThreads(idx->shape[0]);
  const int nb2 = (idx->shape[0] + nt - 1) / nt;
  CUDA_KERNEL_CALL(_SortedSearchKernel,
      nb2, nt2, 0, stream,
      csr.indptr.Ptr<IdType>(), csr.num_rows,
      idx.Ptr<IdType>(), idx->shape[0],
      ret_row.Ptr<IdType>());

  // Column & data can be obtained by index select.
  IdArray ret_col = IndexSelect(csr.indices, idx);
  IdArray ret_data = CSRHasData(csr)? IndexSelect(csr.data, idx) : idx;
  return {ret_row, ret_col, ret_data};
}

lisj's avatar
lisj committed
396
template std::vector<NDArray> CSRGetDataAndIndices<kDLROCM, int32_t>(
397
    CSRMatrix csr, NDArray rows, NDArray cols);
lisj's avatar
lisj committed
398
template std::vector<NDArray> CSRGetDataAndIndices<kDLROCM, int64_t>(
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
    CSRMatrix csr, NDArray rows, NDArray cols);

///////////////////////////// CSRSliceMatrix /////////////////////////////

/*!
 * \brief Generate a 0-1 mask for each index whose column is in the provided set.
 *        It also counts the number of masked values per row.
 */
template <typename IdType>
__global__ void _SegmentMaskColKernel(
    const IdType* indptr, const IdType* indices, int64_t num_rows, int64_t num_nnz,
    const IdType* col, int64_t col_len,
    IdType* mask, IdType* count) {
  IdType tx = static_cast<IdType>(blockIdx.x) * blockDim.x + threadIdx.x;
  const int stride_x = gridDim.x * blockDim.x;
  while (tx < num_nnz) {
    IdType rpos = dgl::cuda::_UpperBound(indptr, num_rows, tx) - 1;
    IdType cur_c = indices[tx];
    IdType i = dgl::cuda::_BinarySearch(col, col_len, cur_c);
    if (i < col_len) {
      mask[tx] = 1;
      cuda::AtomicAdd(count+rpos, IdType(1));
    }
    tx += stride_x;
  }
}

template <DLDeviceType XPU, typename IdType>
CSRMatrix CSRSliceMatrix(CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols) {
  hipStream_t stream = runtime::getCurrentCUDAStream();
  const auto& ctx = rows->ctx;
  const auto& dtype = rows->dtype;
  const auto nbits = dtype.bits;
  const int64_t new_nrows = rows->shape[0];
  const int64_t new_ncols = cols->shape[0];

  if (new_nrows == 0 || new_ncols == 0)
    return CSRMatrix(new_nrows, new_ncols,
                     Full(0, new_nrows + 1, nbits, ctx),
                     NullArray(dtype, ctx), NullArray(dtype, ctx));

  // First slice rows
  csr = CSRSliceRows(csr, rows);

  if (csr.indices->shape[0] == 0)
    return CSRMatrix(new_nrows, new_ncols,
                     Full(0, new_nrows + 1, nbits, ctx),
                     NullArray(dtype, ctx), NullArray(dtype, ctx));

  // Generate a 0-1 mask for matched (row, col) positions.
  IdArray mask = Full(0, csr.indices->shape[0], nbits, ctx);
  // A count for how many masked values per row.
  IdArray count = NewIdArray(csr.num_rows, ctx, nbits);
  CUDA_CALL(hipMemset(count.Ptr<IdType>(), 0, sizeof(IdType) * (csr.num_rows)));

  const int64_t nnz_csr = csr.indices->shape[0];
  const int nt = 256;

  // In general ``cols'' array is sorted. But it is not guaranteed.
  // Hence checking and sorting array first. Sorting is not in place.
  auto device = runtime::DeviceAPI::Get(ctx);
  auto cols_size = cols->shape[0];

  IdArray sorted_array = NewIdArray(cols->shape[0], ctx, cols->dtype.bits);
  auto ptr_sorted_cols = sorted_array.Ptr<IdType>();
  auto ptr_cols = cols.Ptr<IdType>();
  size_t workspace_size = 0;
  CUDA_CALL(hipcub::DeviceRadixSort::SortKeys(
       nullptr, workspace_size, ptr_cols, ptr_sorted_cols, cols->shape[0],
       0, sizeof(IdType)*8, stream));
  void *workspace = device->AllocWorkspace(ctx, workspace_size);
  CUDA_CALL(hipcub::DeviceRadixSort::SortKeys(
       workspace, workspace_size, ptr_cols, ptr_sorted_cols, cols->shape[0],
       0, sizeof(IdType)*8, stream));
  device->FreeWorkspace(ctx, workspace);

  // Execute SegmentMaskColKernel
  int nb = (nnz_csr + nt - 1) / nt;
  CUDA_KERNEL_CALL(_SegmentMaskColKernel,
      nb, nt, 0, stream,
      csr.indptr.Ptr<IdType>(), csr.indices.Ptr<IdType>(), csr.num_rows, nnz_csr,
      ptr_sorted_cols, cols_size,
      mask.Ptr<IdType>(), count.Ptr<IdType>());

  IdArray idx = AsNumBits(NonZero(mask), nbits);
  if (idx->shape[0] == 0)
    return CSRMatrix(new_nrows, new_ncols,
                     Full(0, new_nrows + 1, nbits, ctx),
                     NullArray(dtype, ctx), NullArray(dtype, ctx));

  // Indptr needs to be adjusted according to the new nnz per row.
  IdArray ret_indptr = CumSum(count, true);

  // Column & data can be obtained by index select.
  IdArray ret_col = IndexSelect(csr.indices, idx);
  IdArray ret_data = CSRHasData(csr)? IndexSelect(csr.data, idx) : idx;

  // Relabel column
  IdArray col_hash = NewIdArray(csr.num_cols, ctx, nbits);
  Scatter_(cols, Range(0, cols->shape[0], nbits, ctx), col_hash);
  ret_col = IndexSelect(col_hash, ret_col);

  return CSRMatrix(new_nrows, new_ncols, ret_indptr,
                   ret_col, ret_data);
}

lisj's avatar
lisj committed
505
template CSRMatrix CSRSliceMatrix<kDLROCM, int32_t>(
506
    CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);
lisj's avatar
lisj committed
507
template CSRMatrix CSRSliceMatrix<kDLROCM, int64_t>(
508
509
510
511
512
    CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);

}  // namespace impl
}  // namespace aten
}  // namespace dgl