negative_sampling.cu 7.59 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#include "hip/hip_runtime.h"
/*!
 *  Copyright (c) 2021 by Contributors
 * \file array/cuda/negative_sampling.cu
 * \brief rowwise sampling
 */

#include <dgl/random.h>
#include <dgl/array.h>
#include <dgl/array_iterator.h>
#include <hiprand_kernel.h>

#include "./dgl_cub.cuh"
#include "./utils.h"
#include "../../runtime/cuda/cuda_common.h"

using namespace dgl::runtime;

namespace dgl {
namespace aten {
namespace impl {

namespace {

template <typename IdType>
__global__ void _GlobalUniformNegativeSamplingKernel(
    const IdType* __restrict__ indptr,
    const IdType* __restrict__ indices,
    IdType* __restrict__ row,
    IdType* __restrict__ col,
    int64_t num_row,
    int64_t num_col,
    int64_t num_samples,
    int num_trials,
    bool exclude_self_loops,
    int32_t random_seed) {
  int64_t tx = blockIdx.x * blockDim.x + threadIdx.x;
  const int stride_x = gridDim.x * blockDim.x;

  hiprandStatePhilox4_32_10_t rng;   // this allows generating 4 32-bit ints at a time
  hiprand_init(random_seed * gridDim.x + blockIdx.x, threadIdx.x, 0, &rng);

  while (tx < num_samples) {
    for (int i = 0; i < num_trials; ++i) {
      uint4 result = hiprand4(&rng);
      // Turns out that result.x is always 0 with the above RNG.
      uint64_t y_hi = result.y >> 16;
      uint64_t y_lo = result.y & 0xFFFF;
      uint64_t z = static_cast<uint64_t>(result.z);
      uint64_t w = static_cast<uint64_t>(result.w);
      int64_t u = static_cast<int64_t>(((y_lo << 32L) | z) % num_row);
      int64_t v = static_cast<int64_t>(((y_hi << 32L) | w) % num_col);

      if (exclude_self_loops && (u == v))
        continue;

      // binary search of v among indptr[u:u+1]
      int64_t b = indptr[u], e = indptr[u + 1] - 1;
      bool found = false;
      while (b <= e) {
        int64_t m = (b + e) / 2;
        if (indices[m] == v) {
          found = true;
          break;
        } else if (indices[m] < v) {
          b = m + 1;
        } else {
          e = m - 1;
        }
      }

      if (!found) {
        row[tx] = u;
        col[tx] = v;
        break;
      }
    }

    tx += stride_x;
  }
}

template <typename DType>
struct IsNotMinusOne {
  __device__ __forceinline__ bool operator() (const std::pair<DType, DType>& a) {
    return a.first != -1;
  }
};

/*!
 * \brief Sort ordered pairs in ascending order, using \a tmp_major and \a tmp_minor as
 * temporary buffers, each with \a n elements.
 */
template <typename IdType>
void SortOrderedPairs(
    runtime::DeviceAPI* device,
    DLContext ctx,
    IdType* major,
    IdType* minor,
    IdType* tmp_major,
    IdType* tmp_minor,
    int64_t n,
    hipStream_t stream) {
  // Sort ordered pairs in lexicographical order by two radix sorts since
  // cub's radix sorts are stable.
  // We need a 2*n auxiliary storage to store the results form the first radix sort.
  size_t s1 = 0, s2 = 0;
  void* tmp1 = nullptr;
  void* tmp2 = nullptr;

  // Radix sort by minor key first, reorder the major key in the progress.
  CUDA_CALL(hipcub::DeviceRadixSort::SortPairs(
        tmp1, s1, minor, tmp_minor, major, tmp_major, n, 0, sizeof(IdType) * 8, stream));
  tmp1 = device->AllocWorkspace(ctx, s1);
  CUDA_CALL(hipcub::DeviceRadixSort::SortPairs(
        tmp1, s1, minor, tmp_minor, major, tmp_major, n, 0, sizeof(IdType) * 8, stream));

  // Radix sort by major key next.
  CUDA_CALL(hipcub::DeviceRadixSort::SortPairs(
        tmp2, s2, tmp_major, major, tmp_minor, minor, n, 0, sizeof(IdType) * 8, stream));
  tmp2 = (s2 > s1) ? device->AllocWorkspace(ctx, s2) : tmp1;  // reuse buffer if s2 <= s1
  CUDA_CALL(hipcub::DeviceRadixSort::SortPairs(
        tmp2, s2, tmp_major, major, tmp_minor, minor, n, 0, sizeof(IdType) * 8, stream));

  if (tmp1 != tmp2)
    device->FreeWorkspace(ctx, tmp2);
  device->FreeWorkspace(ctx, tmp1);
}

};  // namespace

template <DLDeviceType XPU, typename IdType>
std::pair<IdArray, IdArray> CSRGlobalUniformNegativeSampling(
    const CSRMatrix& csr,
    int64_t num_samples,
    int num_trials,
    bool exclude_self_loops,
    bool replace,
    double redundancy) {
  auto ctx = csr.indptr->ctx;
  auto dtype = csr.indptr->dtype;
  const int64_t num_row = csr.num_rows;
  const int64_t num_col = csr.num_cols;
  const int64_t num_actual_samples = static_cast<int64_t>(num_samples * (1 + redundancy));
  IdArray row = Full<IdType>(-1, num_actual_samples, ctx);
  IdArray col = Full<IdType>(-1, num_actual_samples, ctx);
  IdArray out_row = IdArray::Empty({num_actual_samples}, dtype, ctx);
  IdArray out_col = IdArray::Empty({num_actual_samples}, dtype, ctx);
  IdType* row_data = row.Ptr<IdType>();
  IdType* col_data = col.Ptr<IdType>();
  IdType* out_row_data = out_row.Ptr<IdType>();
  IdType* out_col_data = out_col.Ptr<IdType>();
  auto device = runtime::DeviceAPI::Get(ctx);
  hipStream_t stream = runtime::getCurrentCUDAStream();
  const int nt = cuda::FindNumThreads(num_actual_samples);
  const int nb = (num_actual_samples + nt - 1) / nt;
  std::pair<IdArray, IdArray> result;
  int64_t num_out;

  CUDA_KERNEL_CALL(_GlobalUniformNegativeSamplingKernel,
      nb, nt, 0, stream,
      csr.indptr.Ptr<IdType>(), csr.indices.Ptr<IdType>(),
      row_data, col_data, num_row, num_col, num_actual_samples, num_trials,
      exclude_self_loops, RandomEngine::ThreadLocal()->RandInt32());

  size_t tmp_size = 0;
  int64_t* num_out_cuda = static_cast<int64_t*>(device->AllocWorkspace(ctx, sizeof(int64_t)));
  IsNotMinusOne<IdType> op;
  PairIterator<IdType> begin(row_data, col_data);
  PairIterator<IdType> out_begin(out_row_data, out_col_data);
  CUDA_CALL(hipcub::DeviceSelect::If(
        nullptr, tmp_size, begin, out_begin, num_out_cuda, num_actual_samples, op, stream));
  void* tmp = device->AllocWorkspace(ctx, tmp_size);
  CUDA_CALL(hipcub::DeviceSelect::If(
        tmp, tmp_size, begin, out_begin, num_out_cuda, num_actual_samples, op, stream));
  num_out = cuda::GetCUDAScalar(device, ctx, num_out_cuda);

  if (!replace) {
    IdArray unique_row = IdArray::Empty({num_out}, dtype, ctx);
    IdArray unique_col = IdArray::Empty({num_out}, dtype, ctx);
    IdType* unique_row_data = unique_row.Ptr<IdType>();
    IdType* unique_col_data = unique_col.Ptr<IdType>();
    PairIterator<IdType> unique_begin(unique_row_data, unique_col_data);

    SortOrderedPairs(
        device, ctx, out_row_data, out_col_data, unique_row_data, unique_col_data,
        num_out, stream);

    size_t tmp_size_unique = 0;
    void* tmp_unique = nullptr;
    CUDA_CALL(hipcub::DeviceSelect::Unique(
          nullptr, tmp_size_unique, out_begin, unique_begin, num_out_cuda, num_out, stream));
    tmp_unique = (tmp_size_unique > tmp_size) ?
      device->AllocWorkspace(ctx, tmp_size_unique) :
      tmp;      // reuse buffer
    CUDA_CALL(hipcub::DeviceSelect::Unique(
          tmp_unique, tmp_size_unique, out_begin, unique_begin, num_out_cuda, num_out, stream));
    num_out = cuda::GetCUDAScalar(device, ctx, num_out_cuda);

    num_out = std::min(num_samples, num_out);
    result = {unique_row.CreateView({num_out}, dtype), unique_col.CreateView({num_out}, dtype)};

    if (tmp_unique != tmp)
      device->FreeWorkspace(ctx, tmp_unique);
  } else {
    num_out = std::min(num_samples, num_out);
    result = {out_row.CreateView({num_out}, dtype), out_col.CreateView({num_out}, dtype)};
  }

  device->FreeWorkspace(ctx, tmp);
  device->FreeWorkspace(ctx, num_out_cuda);
  return result;
}

lisj's avatar
lisj committed
215
template std::pair<IdArray, IdArray> CSRGlobalUniformNegativeSampling<kDLROCM, int32_t>(
216
    const CSRMatrix&, int64_t, int, bool, bool, double);
lisj's avatar
lisj committed
217
template std::pair<IdArray, IdArray> CSRGlobalUniformNegativeSampling<kDLROCM, int64_t>(
218
219
220
221
222
    const CSRMatrix&, int64_t, int, bool, bool, double);

};  // namespace impl
};  // namespace aten
};  // namespace dgl