"docs/vscode:/vscode.git/clone" did not exist on "c298223f5de09e9ee265cf6a9fb9145b692b4c5b"
spmat_op_impl_csr.cc 22.4 KB
Newer Older
1
2
/*!
 *  Copyright (c) 2019 by Contributors
3
4
 * \file array/cpu/spmat_op_impl_csr.cc
 * \brief CSR matrix operator CPU implementation
5
6
 */
#include <dgl/array.h>
7
#include <dgl/runtime/parallel_for.h>
8
9
#include <vector>
#include <unordered_set>
10
#include <numeric>
11
#include "array_utils.h"
12
13
14
15

namespace dgl {

using runtime::NDArray;
16
using runtime::parallel_for;
17
18
19
20
21
22
23
24
25
26

namespace aten {
namespace impl {

///////////////////////////// CSRIsNonZero /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool CSRIsNonZero(CSRMatrix csr, int64_t row, int64_t col) {
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
Da Zheng's avatar
Da Zheng committed
27
28
29
30
31
32
33
34
35
  if (csr.sorted) {
    const IdType *start = indices_data + indptr_data[row];
    const IdType *end = indices_data + indptr_data[row + 1];
    return std::binary_search(start, end, col);
  } else {
    for (IdType i = indptr_data[row]; i < indptr_data[row + 1]; ++i) {
      if (indices_data[i] == col) {
        return true;
      }
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    }
  }
  return false;
}

template bool CSRIsNonZero<kDLCPU, int32_t>(CSRMatrix, int64_t, int64_t);
template bool CSRIsNonZero<kDLCPU, int64_t>(CSRMatrix, int64_t, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray CSRIsNonZero(CSRMatrix csr, NDArray row, NDArray col) {
  const auto rowlen = row->shape[0];
  const auto collen = col->shape[0];
  const auto rstlen = std::max(rowlen, collen);
  NDArray rst = NDArray::Empty({rstlen}, row->dtype, row->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
  const IdType* row_data = static_cast<IdType*>(row->data);
  const IdType* col_data = static_cast<IdType*>(col->data);
  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
    *(rst_data++) = CSRIsNonZero<XPU, IdType>(csr, row_data[i], col_data[j])? 1 : 0;
  }
  return rst;
}

template NDArray CSRIsNonZero<kDLCPU, int32_t>(CSRMatrix, NDArray, NDArray);
template NDArray CSRIsNonZero<kDLCPU, int64_t>(CSRMatrix, NDArray, NDArray);

///////////////////////////// CSRHasDuplicate /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool CSRHasDuplicate(CSRMatrix csr) {
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  for (IdType src = 0; src < csr.num_rows; ++src) {
    std::unordered_set<IdType> hashmap;
    for (IdType eid = indptr_data[src]; eid < indptr_data[src+1]; ++eid) {
      const IdType dst = indices_data[eid];
      if (hashmap.count(dst)) {
        return true;
      } else {
        hashmap.insert(dst);
      }
    }
  }
  return false;
}

template bool CSRHasDuplicate<kDLCPU, int32_t>(CSRMatrix csr);
template bool CSRHasDuplicate<kDLCPU, int64_t>(CSRMatrix csr);

///////////////////////////// CSRGetRowNNZ /////////////////////////////

template <DLDeviceType XPU, typename IdType>
int64_t CSRGetRowNNZ(CSRMatrix csr, int64_t row) {
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  return indptr_data[row + 1] - indptr_data[row];
}

template int64_t CSRGetRowNNZ<kDLCPU, int32_t>(CSRMatrix, int64_t);
template int64_t CSRGetRowNNZ<kDLCPU, int64_t>(CSRMatrix, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray CSRGetRowNNZ(CSRMatrix csr, NDArray rows) {
100
  CHECK_SAME_DTYPE(csr.indices, rows);
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
  const auto len = rows->shape[0];
  const IdType* vid_data = static_cast<IdType*>(rows->data);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  NDArray rst = NDArray::Empty({len}, rows->dtype, rows->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
  for (int64_t i = 0; i < len; ++i) {
    const auto vid = vid_data[i];
    rst_data[i] = indptr_data[vid + 1] - indptr_data[vid];
  }
  return rst;
}

template NDArray CSRGetRowNNZ<kDLCPU, int32_t>(CSRMatrix, NDArray);
template NDArray CSRGetRowNNZ<kDLCPU, int64_t>(CSRMatrix, NDArray);

///////////////////////////// CSRGetRowColumnIndices /////////////////////////////

template <DLDeviceType XPU, typename IdType>
NDArray CSRGetRowColumnIndices(CSRMatrix csr, int64_t row) {
  const int64_t len = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const int64_t offset = indptr_data[row] * sizeof(IdType);
  return csr.indices.CreateView({len}, csr.indices->dtype, offset);
}

template NDArray CSRGetRowColumnIndices<kDLCPU, int32_t>(CSRMatrix, int64_t);
template NDArray CSRGetRowColumnIndices<kDLCPU, int64_t>(CSRMatrix, int64_t);

///////////////////////////// CSRGetRowData /////////////////////////////

131
template <DLDeviceType XPU, typename IdType>
132
133
134
NDArray CSRGetRowData(CSRMatrix csr, int64_t row) {
  const int64_t len = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
135
136
137
138
139
  const int64_t offset = indptr_data[row] * sizeof(IdType);
  if (CSRHasData(csr))
    return csr.data.CreateView({len}, csr.data->dtype, offset);
  else
    return aten::Range(offset, offset + len, csr.indptr->dtype.bits, csr.indptr->ctx);
140
141
}

142
143
template NDArray CSRGetRowData<kDLCPU, int32_t>(CSRMatrix, int64_t);
template NDArray CSRGetRowData<kDLCPU, int64_t>(CSRMatrix, int64_t);
144
145
146
147

///////////////////////////// CSRGetData /////////////////////////////
///////////////////////////// CSRGetDataAndIndices /////////////////////////////

148
149
template <DLDeviceType XPU, typename IdType>
void CollectDataIndicesFromSorted(const IdType *indices_data, const IdType *data,
Da Zheng's avatar
Da Zheng committed
150
151
                                  const IdType start, const IdType end, const IdType col,
                                  std::vector<IdType> *col_vec,
152
                                  std::vector<IdType> *ret_vec) {
Da Zheng's avatar
Da Zheng committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
  const IdType *start_ptr = indices_data + start;
  const IdType *end_ptr = indices_data + end;
  auto it = std::lower_bound(start_ptr, end_ptr, col);
  // This might be a multi-graph. We need to collect all of the matched
  // columns.
  for (; it != end_ptr; it++) {
    // If the col exist
    if (*it == col) {
      IdType idx = it - indices_data;
      col_vec->push_back(indices_data[idx]);
      ret_vec->push_back(data[idx]);
    } else {
      // If we find a column that is different, we can stop searching now.
      break;
    }
  }
}

171
template <DLDeviceType XPU, typename IdType>
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
std::vector<NDArray> CSRGetDataAndIndices(CSRMatrix csr, NDArray rows, NDArray cols) {
  // TODO(minjie): more efficient implementation for matrix without duplicate entries
  const int64_t rowlen = rows->shape[0];
  const int64_t collen = cols->shape[0];

  CHECK((rowlen == collen) || (rowlen == 1) || (collen == 1))
    << "Invalid row and col id array.";

  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const IdType* row_data = static_cast<IdType*>(rows->data);
  const IdType* col_data = static_cast<IdType*>(cols->data);

  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
187
  const IdType* data = CSRHasData(csr)? static_cast<IdType*>(csr.data->data) : nullptr;
188
189

  std::vector<IdType> ret_rows, ret_cols;
190
  std::vector<IdType> ret_data;
191
192
193
194
195

  for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
    const IdType row_id = row_data[i], col_id = col_data[j];
    CHECK(row_id >= 0 && row_id < csr.num_rows) << "Invalid row index: " << row_id;
    CHECK(col_id >= 0 && col_id < csr.num_cols) << "Invalid col index: " << col_id;
Da Zheng's avatar
Da Zheng committed
196
197
    if (csr.sorted) {
      // Here we collect col indices and data.
198
199
200
201
202
      CollectDataIndicesFromSorted<XPU, IdType>(indices_data, data,
                                                indptr_data[row_id],
                                                indptr_data[row_id + 1],
                                                col_id, &ret_cols,
                                                &ret_data);
Da Zheng's avatar
Da Zheng committed
203
204
205
206
207
208
209
      // We need to add row Ids.
      while (ret_rows.size() < ret_data.size()) {
        ret_rows.push_back(row_id);
      }
    } else {
      for (IdType i = indptr_data[row_id]; i < indptr_data[row_id+1]; ++i) {
        if (indices_data[i] == col_id) {
210
211
          ret_rows.push_back(row_id);
          ret_cols.push_back(col_id);
212
          ret_data.push_back(data? data[i] : i);
Da Zheng's avatar
Da Zheng committed
213
        }
214
215
216
217
      }
    }
  }

218
219
220
  return {NDArray::FromVector(ret_rows, csr.indptr->ctx),
          NDArray::FromVector(ret_cols, csr.indptr->ctx),
          NDArray::FromVector(ret_data, csr.data->ctx)};
221
222
}

223
template std::vector<NDArray> CSRGetDataAndIndices<kDLCPU, int32_t>(
224
    CSRMatrix csr, NDArray rows, NDArray cols);
225
template std::vector<NDArray> CSRGetDataAndIndices<kDLCPU, int64_t>(
226
227
228
229
230
231
    CSRMatrix csr, NDArray rows, NDArray cols);

///////////////////////////// CSRTranspose /////////////////////////////

// for a matrix of shape (N, M) and NNZ
// complexity: time O(NNZ + max(N, M)), space O(1)
232
template <DLDeviceType XPU, typename IdType>
233
234
235
236
237
238
CSRMatrix CSRTranspose(CSRMatrix csr) {
  const int64_t N = csr.num_rows;
  const int64_t M = csr.num_cols;
  const int64_t nnz = csr.indices->shape[0];
  const IdType* Ap = static_cast<IdType*>(csr.indptr->data);
  const IdType* Aj = static_cast<IdType*>(csr.indices->data);
239
  const IdType* Ax = CSRHasData(csr)? static_cast<IdType*>(csr.data->data) : nullptr;
240
241
  NDArray ret_indptr = NDArray::Empty({M + 1}, csr.indptr->dtype, csr.indptr->ctx);
  NDArray ret_indices = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
242
  NDArray ret_data = NDArray::Empty({nnz}, csr.indptr->dtype, csr.indptr->ctx);
243
244
  IdType* Bp = static_cast<IdType*>(ret_indptr->data);
  IdType* Bi = static_cast<IdType*>(ret_indices->data);
245
  IdType* Bx = static_cast<IdType*>(ret_data->data);
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

  std::fill(Bp, Bp + M, 0);

  for (int64_t j = 0; j < nnz; ++j) {
    Bp[Aj[j]]++;
  }

  // cumsum
  for (int64_t i = 0, cumsum = 0; i < M; ++i) {
    const IdType temp = Bp[i];
    Bp[i] = cumsum;
    cumsum += temp;
  }
  Bp[M] = nnz;

  for (int64_t i = 0; i < N; ++i) {
    for (IdType j = Ap[i]; j < Ap[i+1]; ++j) {
      const IdType dst = Aj[j];
      Bi[Bp[dst]] = i;
265
      Bx[Bp[dst]] = Ax? Ax[j] : j;
266
267
268
269
270
271
272
273
274
275
276
277
278
279
      Bp[dst]++;
    }
  }

  // correct the indptr
  for (int64_t i = 0, last = 0; i <= M; ++i) {
    IdType temp = Bp[i];
    Bp[i] = last;
    last = temp;
  }

  return CSRMatrix{csr.num_cols, csr.num_rows, ret_indptr, ret_indices, ret_data};
}

280
281
template CSRMatrix CSRTranspose<kDLCPU, int32_t>(CSRMatrix csr);
template CSRMatrix CSRTranspose<kDLCPU, int64_t>(CSRMatrix csr);
282
283
284
285
286
287
288
289
290
291
292
293
294

///////////////////////////// CSRToCOO /////////////////////////////
template <DLDeviceType XPU, typename IdType>
COOMatrix CSRToCOO(CSRMatrix csr) {
  const int64_t nnz = csr.indices->shape[0];
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  NDArray ret_row = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  IdType* ret_row_data = static_cast<IdType*>(ret_row->data);
  for (IdType i = 0; i < csr.indptr->shape[0] - 1; ++i) {
    std::fill(ret_row_data + indptr_data[i],
              ret_row_data + indptr_data[i + 1],
              i);
  }
295
296
297
  return COOMatrix(csr.num_rows, csr.num_cols,
                   ret_row, csr.indices, csr.data,
                   true, csr.sorted);
298
299
300
301
302
303
304
305
306
307
308
309
310
311
}

template COOMatrix CSRToCOO<kDLCPU, int32_t>(CSRMatrix csr);
template COOMatrix CSRToCOO<kDLCPU, int64_t>(CSRMatrix csr);

// complexity: time O(NNZ), space O(1)
template <DLDeviceType XPU, typename IdType>
COOMatrix CSRToCOODataAsOrder(CSRMatrix csr) {
  const int64_t N = csr.num_rows;
  const int64_t M = csr.num_cols;
  const int64_t nnz = csr.indices->shape[0];
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  // data array should have the same type as the indices arrays
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
312
  const IdType* data = CSRHasData(csr) ? static_cast<IdType*>(csr.data->data) : nullptr;
313
314
315
316
317
318
319
320
  NDArray ret_row = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  NDArray ret_col = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  IdType* ret_row_data = static_cast<IdType*>(ret_row->data);
  IdType* ret_col_data = static_cast<IdType*>(ret_col->data);
  // scatter using the indices in the data array
  for (IdType row = 0; row < N; ++row) {
    for (IdType j = indptr_data[row]; j < indptr_data[row + 1]; ++j) {
      const IdType col = indices_data[j];
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
321
322
      ret_row_data[data ? data[j] : j] = row;
      ret_col_data[data ? data[j] : j] = col;
323
324
    }
  }
325
  return COOMatrix(N, M, ret_row, ret_col);
326
327
328
329
330
331
332
}

template COOMatrix CSRToCOODataAsOrder<kDLCPU, int32_t>(CSRMatrix csr);
template COOMatrix CSRToCOODataAsOrder<kDLCPU, int64_t>(CSRMatrix csr);

///////////////////////////// CSRSliceRows /////////////////////////////

333
template <DLDeviceType XPU, typename IdType>
334
335
336
337
CSRMatrix CSRSliceRows(CSRMatrix csr, int64_t start, int64_t end) {
  const IdType* indptr = static_cast<IdType*>(csr.indptr->data);
  const int64_t num_rows = end - start;
  const int64_t nnz = indptr[end] - indptr[start];
338
339
  IdArray ret_indptr = IdArray::Empty({num_rows + 1}, csr.indptr->dtype, csr.indices->ctx);
  IdType* r_indptr = static_cast<IdType*>(ret_indptr->data);
340
341
342
343
  for (int64_t i = start; i < end + 1; ++i) {
    r_indptr[i - start] = indptr[i] - indptr[start];
  }
  // indices and data can be view arrays
344
345
346
347
348
349
350
351
352
353
354
  IdArray ret_indices = csr.indices.CreateView(
      {nnz}, csr.indices->dtype, indptr[start] * sizeof(IdType));
  IdArray ret_data;
  if (CSRHasData(csr))
    ret_data = csr.data.CreateView({nnz}, csr.data->dtype, indptr[start] * sizeof(IdType));
  else
    ret_data = aten::Range(indptr[start], indptr[end],
                           csr.indptr->dtype.bits, csr.indptr->ctx);
  return CSRMatrix(num_rows, csr.num_cols,
                   ret_indptr, ret_indices, ret_data,
                   csr.sorted);
355
356
}

357
358
template CSRMatrix CSRSliceRows<kDLCPU, int32_t>(CSRMatrix, int64_t, int64_t);
template CSRMatrix CSRSliceRows<kDLCPU, int64_t>(CSRMatrix, int64_t, int64_t);
359

360
template <DLDeviceType XPU, typename IdType>
361
CSRMatrix CSRSliceRows(CSRMatrix csr, NDArray rows) {
362
  CHECK_SAME_DTYPE(csr.indices, rows);
363
364
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
365
  const IdType* data = CSRHasData(csr)? static_cast<IdType*>(csr.data->data) : nullptr;
366
367
368
369
370
371
372
373
  const auto len = rows->shape[0];
  const IdType* rows_data = static_cast<IdType*>(rows->data);
  int64_t nnz = 0;

  CSRMatrix ret;
  ret.num_rows = len;
  ret.num_cols = csr.num_cols;
  ret.indptr = NDArray::Empty({len + 1}, csr.indptr->dtype, csr.indices->ctx);
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

  IdType* ret_indptr_data = static_cast<IdType*>(ret.indptr->data);
  ret_indptr_data[0] = 0;

  std::vector<IdType> sums;

  // Perform two-round parallel prefix sum using OpenMP
  #pragma omp parallel
  {
    int64_t tid = omp_get_thread_num();
    int64_t num_threads = omp_get_num_threads();

    #pragma omp single
    {
        sums.resize(num_threads + 1);
        sums[0] = 0;
    }

    int64_t sum = 0;

    // First round of parallel prefix sum. All threads perform local prefix sums.
    #pragma omp for schedule(static) nowait
    for (int64_t i = 0; i < len; ++i) {
      int64_t rid = rows_data[i];
      sum += indptr_data[rid + 1] - indptr_data[rid];
      ret_indptr_data[i + 1] = sum;
    }
    sums[tid + 1] = sum;
    #pragma omp barrier

    #pragma omp single
    {
      for (int64_t i = 1; i < num_threads; ++i)
        sums[i] += sums[i - 1];
    }

    int64_t offset = sums[tid];

    // Second round of parallel prefix sum. Update the local prefix sums.
    #pragma omp for schedule(static)
    for (int64_t i = 0; i < len; ++i)
      ret_indptr_data[i + 1] += offset;
  }

  // After the prefix sum, the last element of ret_indptr_data holds the
  // sum of all elements
  nnz = ret_indptr_data[len];

422
  ret.indices = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
423
424
  ret.data = NDArray::Empty({nnz}, csr.indptr->dtype, csr.indptr->ctx);
  ret.sorted = csr.sorted;
425
426

  IdType* ret_indices_data = static_cast<IdType*>(ret.indices->data);
427
  IdType* ret_data = static_cast<IdType*>(ret.data->data);
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

  parallel_for(0, len, [=](int64_t b, int64_t e) {
    for (auto i = b; i < e; ++i) {
      const IdType rid = rows_data[i];
      // note: zero is allowed
      std::copy(indices_data + indptr_data[rid], indices_data + indptr_data[rid + 1],
                ret_indices_data + ret_indptr_data[i]);
      if (data)
        std::copy(data + indptr_data[rid], data + indptr_data[rid + 1],
                  ret_data + ret_indptr_data[i]);
      else
        std::iota(ret_data + ret_indptr_data[i], ret_data + ret_indptr_data[i + 1],
                  indptr_data[rid]);
    }
  });
443
444
445
  return ret;
}

446
447
template CSRMatrix CSRSliceRows<kDLCPU, int32_t>(CSRMatrix , NDArray);
template CSRMatrix CSRSliceRows<kDLCPU, int64_t>(CSRMatrix , NDArray);
448
449
450

///////////////////////////// CSRSliceMatrix /////////////////////////////

451
template <DLDeviceType XPU, typename IdType>
452
453
454
455
456
CSRMatrix CSRSliceMatrix(CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols) {
  IdHashMap<IdType> hashmap(cols);
  const int64_t new_nrows = rows->shape[0];
  const int64_t new_ncols = cols->shape[0];
  const IdType* rows_data = static_cast<IdType*>(rows->data);
457
  const bool has_data = CSRHasData(csr);
458
459
460

  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
461
  const IdType* data = has_data? static_cast<IdType*>(csr.data->data) : nullptr;
462
463

  std::vector<IdType> sub_indptr, sub_indices;
464
  std::vector<IdType> sub_data;
465
466
467
468
469
470
471
472
473
474
475
476
  sub_indptr.resize(new_nrows + 1, 0);
  const IdType kInvalidId = new_ncols + 1;
  for (int64_t i = 0; i < new_nrows; ++i) {
    // NOTE: newi == i
    const IdType oldi = rows_data[i];
    CHECK(oldi >= 0 && oldi < csr.num_rows) << "Invalid row index: " << oldi;
    for (IdType p = indptr_data[oldi]; p < indptr_data[oldi + 1]; ++p) {
      const IdType oldj = indices_data[p];
      const IdType newj = hashmap.Map(oldj, kInvalidId);
      if (newj != kInvalidId) {
        ++sub_indptr[i];
        sub_indices.push_back(newj);
477
        sub_data.push_back(has_data? data[p] : p);
478
479
480
481
482
483
484
485
486
487
488
489
490
      }
    }
  }

  // cumsum sub_indptr
  for (int64_t i = 0, cumsum = 0; i < new_nrows; ++i) {
    const IdType temp = sub_indptr[i];
    sub_indptr[i] = cumsum;
    cumsum += temp;
  }
  sub_indptr[new_nrows] = sub_indices.size();

  const int64_t nnz = sub_data.size();
491
492
  NDArray sub_data_arr = NDArray::Empty({nnz}, csr.indptr->dtype, csr.indptr->ctx);
  IdType* ptr = static_cast<IdType*>(sub_data_arr->data);
493
494
  std::copy(sub_data.begin(), sub_data.end(), ptr);
  return CSRMatrix{new_nrows, new_ncols,
495
496
    NDArray::FromVector(sub_indptr, csr.indptr->ctx),
    NDArray::FromVector(sub_indices, csr.indptr->ctx),
497
498
499
    sub_data_arr};
}

500
template CSRMatrix CSRSliceMatrix<kDLCPU, int32_t>(
501
    CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);
502
template CSRMatrix CSRSliceMatrix<kDLCPU, int64_t>(
503
504
    CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);

Da Zheng's avatar
Da Zheng committed
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
///////////////////////////// CSRReorder /////////////////////////////

template <DLDeviceType XPU, typename IdType>
CSRMatrix CSRReorder(CSRMatrix csr, runtime::NDArray new_row_id_arr,
                     runtime::NDArray new_col_id_arr) {
  CHECK_SAME_DTYPE(csr.indices, new_row_id_arr);
  CHECK_SAME_DTYPE(csr.indices, new_col_id_arr);

  // Input CSR
  const IdType* in_indptr = static_cast<IdType*>(csr.indptr->data);
  const IdType* in_indices = static_cast<IdType*>(csr.indices->data);
  const IdType* in_data = static_cast<IdType*>(csr.data->data);
  int64_t num_rows = csr.num_rows;
  int64_t num_cols = csr.num_cols;
  int64_t nnz = csr.indices->shape[0];
  CHECK_EQ(nnz, in_indptr[num_rows]);
  CHECK_EQ(num_rows, new_row_id_arr->shape[0])
      << "The new row Id array needs to be the same as the number of rows of CSR";
  CHECK_EQ(num_cols, new_col_id_arr->shape[0])
      << "The new col Id array needs to be the same as the number of cols of CSR";

  // New row/col Ids.
  const IdType* new_row_ids = static_cast<IdType*>(new_row_id_arr->data);
  const IdType* new_col_ids = static_cast<IdType*>(new_col_id_arr->data);

  // Output CSR
  NDArray out_indptr_arr = NDArray::Empty({num_rows + 1}, csr.indptr->dtype, csr.indptr->ctx);
  NDArray out_indices_arr = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  NDArray out_data_arr = NDArray::Empty({nnz}, csr.data->dtype, csr.data->ctx);
  IdType *out_indptr = static_cast<IdType*>(out_indptr_arr->data);
  IdType *out_indices = static_cast<IdType*>(out_indices_arr->data);
  IdType *out_data = static_cast<IdType*>(out_data_arr->data);

  // Compute the length of rows for the new matrix.
  std::vector<IdType> new_row_lens(num_rows, -1);
540
541
542
543
544
545
  parallel_for(0, num_rows, [=, &new_row_lens](size_t b, size_t e) {
    for (auto i = b; i < e; ++i) {
      int64_t new_row_id = new_row_ids[i];
      new_row_lens[new_row_id] = in_indptr[i + 1] - in_indptr[i];
    }
  });
Da Zheng's avatar
Da Zheng committed
546
547
548
549
550
551
552
553
554
555
  // Compute the starting location of each row in the new matrix.
  out_indptr[0] = 0;
  // This is sequential. It should be pretty fast.
  for (int64_t i = 0; i < num_rows; i++) {
    CHECK_GE(new_row_lens[i], 0);
    out_indptr[i + 1] = out_indptr[i] + new_row_lens[i];
  }
  CHECK_EQ(out_indptr[num_rows], nnz);
  // Copy indieces and data with the new order.
  // Here I iterate rows in the order of the old matrix.
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
  parallel_for(0, num_rows, [=](size_t b, size_t e) {
    for (auto i = b; i < e; ++i) {
      const IdType *in_row = in_indices + in_indptr[i];
      const IdType *in_row_data = in_data + in_indptr[i];

      int64_t new_row_id = new_row_ids[i];
      IdType *out_row = out_indices + out_indptr[new_row_id];
      IdType *out_row_data = out_data + out_indptr[new_row_id];

      int64_t row_len = new_row_lens[new_row_id];
      // Here I iterate col indices in a row in the order of the old matrix.
      for (int64_t j = 0; j < row_len; j++) {
        out_row[j] = new_col_ids[in_row[j]];
        out_row_data[j] = in_row_data[j];
      }
      // TODO(zhengda) maybe we should sort the column indices.
Da Zheng's avatar
Da Zheng committed
572
    }
573
  });
Da Zheng's avatar
Da Zheng committed
574
575
576
577
578
579
580
581
582
  return CSRMatrix(num_rows, num_cols,
    out_indptr_arr, out_indices_arr, out_data_arr);
}

template CSRMatrix CSRReorder<kDLCPU, int64_t>(CSRMatrix csr, runtime::NDArray new_row_ids,
                                               runtime::NDArray new_col_ids);
template CSRMatrix CSRReorder<kDLCPU, int32_t>(CSRMatrix csr, runtime::NDArray new_row_ids,
                                               runtime::NDArray new_col_ids);

583
584
585
}  // namespace impl
}  // namespace aten
}  // namespace dgl