"tests/pipelines/vq_diffusion/__init__.py" did not exist on "c7ba6ba2678ca7e4e58320da8209be8883a56322"
main.py 7.82 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import argparse
import json
import logging
import os
from time import time
import dgl
import torch
import torch.nn
import torch.nn.functional as F
from dgl.data import LegacyTUDataset
11
from dgl.dataloading import GraphDataLoader
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from torch.utils.data import random_split

from network import get_sag_network
from utils import get_stats


def parse_args():
    parser = argparse.ArgumentParser(description="Self-Attention Graph Pooling")
    parser.add_argument("--dataset", type=str, default="DD",
                        choices=["DD", "PROTEINS", "NCI1", "NCI109", "Mutagenicity"],
                        help="DD/PROTEINS/NCI1/NCI109/Mutagenicity")
    parser.add_argument("--batch_size", type=int, default=128,
                        help="batch size")
    parser.add_argument("--lr", type=float, default=5e-4,
                        help="learning rate")
    parser.add_argument("--weight_decay", type=float, default=1e-4,
                        help="weight decay")
    parser.add_argument("--pool_ratio", type=float, default=0.5,
                        help="pooling ratio")
    parser.add_argument("--hid_dim", type=int, default=128,
                        help="hidden size")
    parser.add_argument("--dropout", type=float, default=0.5,
                        help="dropout ratio")
    parser.add_argument("--epochs", type=int, default=100000,
                        help="max number of training epochs")
    parser.add_argument("--patience", type=int, default=50,
                        help="patience for early stopping")
    parser.add_argument("--device", type=int, default=-1,
                        help="device id, -1 for cpu")
    parser.add_argument("--architecture", type=str, default="hierarchical",
                        choices=["hierarchical", "global"],
                        help="model architecture")
    parser.add_argument("--dataset_path", type=str, default="./dataset",
                        help="path to dataset")
    parser.add_argument("--conv_layers", type=int, default=3,
                        help="number of conv layers")
    parser.add_argument("--print_every", type=int, default=10,
                        help="print trainlog every k epochs, -1 for silent training")
    parser.add_argument("--num_trials", type=int, default=1,
                        help="number of trials")
    parser.add_argument("--output_path", type=str, default="./output")
    
    args = parser.parse_args()

    # device
    args.device = "cpu" if args.device == -1 else "cuda:{}".format(args.device)
    if not torch.cuda.is_available():
        logging.warning("CUDA is not available, use CPU for training.")
        args.device = "cpu"

    # print every
    if args.print_every == -1:
        args.print_every = args.epochs + 1

    # paths
    if not os.path.exists(args.dataset_path):
        os.makedirs(args.dataset_path)
    if not os.path.exists(args.output_path):
        os.makedirs(args.output_path)
    name = "Data={}_Hidden={}_Arch={}_Pool={}_WeightDecay={}_Lr={}.log".format(
        args.dataset, args.hid_dim, args.architecture, args.pool_ratio, args.weight_decay, args.lr)
    args.output_path = os.path.join(args.output_path, name)

    return args


def train(model:torch.nn.Module, optimizer, trainloader, device):
    model.train()
    total_loss = 0.
81
    num_batches = len(trainloader)
82
83
84
    for batch in trainloader:
        optimizer.zero_grad()
        batch_graphs, batch_labels = batch
85
86
        for (key, value) in batch_graphs.ndata.items():
            batch_graphs.ndata[key] = value.float()
87
        batch_graphs = batch_graphs.to(device)
88
        batch_labels = batch_labels.long().to(device)
89
90
91
92
93
94
95
        out = model(batch_graphs)
        loss = F.nll_loss(out, batch_labels)
        loss.backward()
        optimizer.step()

        total_loss += loss.item()
    
96
    return total_loss / num_batches
97
98
99
100
101
102
103


@torch.no_grad()
def test(model:torch.nn.Module, loader, device):
    model.eval()
    correct = 0.
    loss = 0.
104
    num_graphs = len(loader)
105
106
    for batch in loader:
        batch_graphs, batch_labels = batch
107
108
        for (key, value) in batch_graphs.ndata.items():
            batch_graphs.ndata[key] = value.float()
109
        batch_graphs = batch_graphs.to(device)
110
        batch_labels = batch_labels.long().to(device)
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        out = model(batch_graphs)
        pred = out.argmax(dim=1)
        loss += F.nll_loss(out, batch_labels, reduction="sum").item()
        correct += pred.eq(batch_labels).sum().item()
    return correct / num_graphs, loss / num_graphs


def main(args):
    # Step 1: Prepare graph data and retrieve train/validation/test index ============================= #
    dataset = LegacyTUDataset(args.dataset, raw_dir=args.dataset_path)

    # add self loop. We add self loop for each graph here since the function "add_self_loop" does not
    # support batch graph.
    for i in range(len(dataset)):
        dataset.graph_lists[i] = dgl.add_self_loop(dataset.graph_lists[i])

    num_training = int(len(dataset) * 0.8)
    num_val = int(len(dataset) * 0.1)
    num_test = len(dataset) - num_val - num_training
    train_set, val_set, test_set = random_split(dataset, [num_training, num_val, num_test])

    train_loader = GraphDataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=6)
    val_loader = GraphDataLoader(val_set, batch_size=args.batch_size, num_workers=2)
    test_loader = GraphDataLoader(test_set, batch_size=args.batch_size, num_workers=2)

    device = torch.device(args.device)
    
    # Step 2: Create model =================================================================== #
    num_feature, num_classes, _ = dataset.statistics()
    model_op = get_sag_network(args.architecture)
    model = model_op(in_dim=num_feature, hid_dim=args.hid_dim, out_dim=num_classes,
                     num_convs=args.conv_layers, pool_ratio=args.pool_ratio, dropout=args.dropout).to(device)
    args.num_feature = int(num_feature)
    args.num_classes = int(num_classes)

    # Step 3: Create training components ===================================================== #
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)

    # Step 4: training epoches =============================================================== #
    bad_cound = 0
    best_val_loss = float("inf")
    final_test_acc = 0.
    best_epoch = 0
    train_times = []
    for e in range(args.epochs):
        s_time = time()
        train_loss = train(model, optimizer, train_loader, device)
        train_times.append(time() - s_time)
        val_acc, val_loss = test(model, val_loader, device)
        test_acc, _ = test(model, test_loader, device)
        if best_val_loss > val_loss:
            best_val_loss = val_loss
            final_test_acc = test_acc
            bad_cound = 0
            best_epoch = e + 1
        else:
            bad_cound += 1
        if bad_cound >= args.patience:
            break
        
        if (e + 1) % args.print_every == 0:
            log_format = "Epoch {}: loss={:.4f}, val_acc={:.4f}, final_test_acc={:.4f}"
            print(log_format.format(e + 1, train_loss, val_acc, final_test_acc))
    print("Best Epoch {}, final test acc {:.4f}".format(best_epoch, final_test_acc))
    return final_test_acc, sum(train_times) / len(train_times)


if __name__ == "__main__":
    args = parse_args()
    res = []
    train_times = []
    for i in range(args.num_trials):
        print("Trial {}/{}".format(i + 1, args.num_trials))
        acc, train_time = main(args)
        res.append(acc)
        train_times.append(train_time)

    mean, err_bd = get_stats(res)
    print("mean acc: {:.4f}, error bound: {:.4f}".format(mean, err_bd))

    out_dict = {"hyper-parameters": vars(args),
                "result": "{:.4f}(+-{:.4f})".format(mean, err_bd),
                "train_time": "{:.4f}".format(sum(train_times) / len(train_times))}

    with open(args.output_path, "w") as f:
        json.dump(out_dict, f, sort_keys=True, indent=4)