"vscode:/vscode.git/clone" did not exist on "381dd9feb4a1c5b900a779d1eb05938f53fb8865"
main.py 5.65 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import argparse
import torch as th
import torch.optim as optim
import torch.nn.functional as F
from dataloader import GASDataset
from model import GAS
from sklearn.metrics import f1_score, roc_auc_score, precision_recall_curve


def main(args):
    # Step 1: Prepare graph data and retrieve train/validation/test index ============================= #
    # Load dataset
    dataset = GASDataset(args.dataset)
    graph = dataset[0]

    # check cuda
    if args.gpu >= 0 and th.cuda.is_available():
        device = 'cuda:{}'.format(args.gpu)
    else:
        device = 'cpu'

    # binary classification
    num_classes = dataset.num_classes

    # retrieve labels of ground truth
    labels = graph.edges['forward'].data['label'].to(device).long()

    # Extract node features
    e_feat = graph.edges['forward'].data['feat'].to(device)
    u_feat = graph.nodes['u'].data['feat'].to(device)
    v_feat = graph.nodes['v'].data['feat'].to(device)

    # retrieve masks for train/validation/test
    train_mask = graph.edges['forward'].data['train_mask']
    val_mask = graph.edges['forward'].data['val_mask']
    test_mask = graph.edges['forward'].data['test_mask']

    train_idx = th.nonzero(train_mask, as_tuple=False).squeeze(1).to(device)
    val_idx = th.nonzero(val_mask, as_tuple=False).squeeze(1).to(device)
    test_idx = th.nonzero(test_mask, as_tuple=False).squeeze(1).to(device)

    graph = graph.to(device)

    # Step 2: Create model =================================================================== #
    model = GAS(e_in_dim=e_feat.shape[-1],
                u_in_dim=u_feat.shape[-1],
                v_in_dim=v_feat.shape[-1],
                e_hid_dim=args.e_hid_dim,
                u_hid_dim=args.u_hid_dim,
                v_hid_dim=args.v_hid_dim,
                out_dim=num_classes,
                num_layers=args.num_layers,
                dropout=args.dropout,
                activation=F.relu)

    model = model.to(device)

    # Step 3: Create training components ===================================================== #
    loss_fn = th.nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)

    # Step 4: training epochs =============================================================== #
    for epoch in range(args.max_epoch):
        # Training and validation using a full graph
        model.train()
        logits = model(graph, e_feat, u_feat, v_feat)

        # compute loss
        tr_loss = loss_fn(logits[train_idx], labels[train_idx])
        tr_f1 = f1_score(labels[train_idx].cpu(), logits[train_idx].argmax(dim=1).cpu())
        tr_auc = roc_auc_score(labels[train_idx].cpu(), logits[train_idx][:, 1].detach().cpu())
        tr_pre, tr_re, _ = precision_recall_curve(labels[train_idx].cpu(), logits[train_idx][:, 1].detach().cpu())
        tr_rap = tr_re[tr_pre > args.precision].max()

        # validation
        valid_loss = loss_fn(logits[val_idx], labels[val_idx])
        valid_f1 = f1_score(labels[val_idx].cpu(), logits[val_idx].argmax(dim=1).cpu())
        valid_auc = roc_auc_score(labels[val_idx].cpu(), logits[val_idx][:, 1].detach().cpu())
        valid_pre, valid_re, _ = precision_recall_curve(labels[val_idx].cpu(), logits[val_idx][:, 1].detach().cpu())
        valid_rap = valid_re[valid_pre > args.precision].max()

        # backward
        optimizer.zero_grad()
        tr_loss.backward()
        optimizer.step()

        # Print out performance
        print("In epoch {}, Train R@P: {:.4f} | Train F1: {:.4f} | Train AUC: {:.4f} | Train Loss: {:.4f}; "
              "Valid R@P: {:.4f} | Valid F1: {:.4f} | Valid AUC: {:.4f} | Valid loss: {:.4f}".
              format(epoch, tr_rap, tr_f1, tr_auc, tr_loss.item(), valid_rap, valid_f1, valid_auc, valid_loss.item()))

    # Test after all epoch
    model.eval()

    # forward
    logits = model(graph, e_feat, u_feat, v_feat)

    # compute loss
    test_loss = loss_fn(logits[test_idx], labels[test_idx])
    test_f1 = f1_score(labels[test_idx].cpu(), logits[test_idx].argmax(dim=1).cpu())
    test_auc = roc_auc_score(labels[test_idx].cpu(), logits[test_idx][:, 1].detach().cpu())
    test_pre, test_re, _ = precision_recall_curve(labels[test_idx].cpu(), logits[test_idx][:, 1].detach().cpu())
    test_rap = test_re[test_pre > args.precision].max()

    print("Test R@P: {:.4f} | Test F1: {:.4f} | Test AUC: {:.4f} | Test loss: {:.4f}".
          format(test_rap, test_f1, test_auc, test_loss.item()))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN-based Anti-Spam Model')
    parser.add_argument("--dataset", type=str, default="pol", help="'pol', or 'gos'")
    parser.add_argument("--gpu", type=int, default=-1, help="GPU Index. Default: -1, using CPU.")
    parser.add_argument("--e_hid_dim", type=int, default=128, help="Hidden layer dimension for edges")
    parser.add_argument("--u_hid_dim", type=int, default=128, help="Hidden layer dimension for source nodes")
    parser.add_argument("--v_hid_dim", type=int, default=128, help="Hidden layer dimension for destination nodes")
    parser.add_argument("--num_layers", type=int, default=2, help="Number of GCN layers")
    parser.add_argument("--max_epoch", type=int, default=100, help="The max number of epochs. Default: 100")
    parser.add_argument("--lr", type=float, default=0.001, help="Learning rate. Default: 1e-3")
    parser.add_argument("--dropout", type=float, default=0.0, help="Dropout rate. Default: 0.0")
    parser.add_argument("--weight_decay", type=float, default=5e-4, help="Weight Decay. Default: 0.0005")
    parser.add_argument("--precision", type=float, default=0.9, help="The value p in recall@p precision. Default: 0.9")

    args = parser.parse_args()
    print(args)
    main(args)