train.py 8.07 KB
Newer Older
Chen Sirui's avatar
Chen Sirui committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from functools import partial
import argparse
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import dgl
from model import GraphRNN
from dcrnn import DiffConv
from gaan import GatedGAT
from dataloading import METR_LAGraphDataset, METR_LATrainDataset,\
    METR_LATestDataset, METR_LAValidDataset,\
    PEMS_BAYGraphDataset, PEMS_BAYTrainDataset,\
    PEMS_BAYValidDataset, PEMS_BAYTestDataset
from utils import NormalizationLayer, masked_mae_loss, get_learning_rate

batch_cnt = [0]


def train(model, graph, dataloader, optimizer, scheduler, normalizer, loss_fn, device, args):
    total_loss = []
    graph = graph.to(device)
    model.train()
    batch_size = args.batch_size
    for i, (x, y) in enumerate(dataloader):
        optimizer.zero_grad()
        # Padding: Since the diffusion graph is precmputed we need to pad the batch so that
        # each batch have same batch size
        if x.shape[0] != batch_size:
            x_buff = torch.zeros(
                batch_size, x.shape[1], x.shape[2], x.shape[3])
            y_buff = torch.zeros(
                batch_size, x.shape[1], x.shape[2], x.shape[3])
            x_buff[:x.shape[0], :, :, :] = x
            x_buff[x.shape[0]:, :, :,
                   :] = x[-1].repeat(batch_size-x.shape[0], 1, 1, 1)
            y_buff[:x.shape[0], :, :, :] = y
            y_buff[x.shape[0]:, :, :,
                   :] = y[-1].repeat(batch_size-x.shape[0], 1, 1, 1)
            x = x_buff
            y = y_buff
        # Permute the dimension for shaping
        x = x.permute(1, 0, 2, 3)
        y = y.permute(1, 0, 2, 3)

        x_norm = normalizer.normalize(x).reshape(
            x.shape[0], -1, x.shape[3]).float().to(device)
        y_norm = normalizer.normalize(y).reshape(
            x.shape[0], -1, x.shape[3]).float().to(device)
        y = y.reshape(y.shape[0], -1, y.shape[3]).float().to(device)

        batch_graph = dgl.batch([graph]*batch_size)
        output = model(batch_graph, x_norm, y_norm, batch_cnt[0], device)
        # Denormalization for loss compute
        y_pred = normalizer.denormalize(output)
        loss = loss_fn(y_pred, y)
        loss.backward()
        nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
        optimizer.step()
        if get_learning_rate(optimizer) > args.minimum_lr:
            scheduler.step()
        total_loss.append(float(loss))
        batch_cnt[0] += 1
        print("Batch: ", i)
    return np.mean(total_loss)


def eval(model, graph, dataloader, normalizer, loss_fn, device, args):
    total_loss = []
    graph = graph.to(device)
    model.eval()
    batch_size = args.batch_size
    for i, (x, y) in enumerate(dataloader):
        # Padding: Since the diffusion graph is precmputed we need to pad the batch so that
        # each batch have same batch size
        if x.shape[0] != batch_size:
            x_buff = torch.zeros(
                batch_size, x.shape[1], x.shape[2], x.shape[3])
            y_buff = torch.zeros(
                batch_size, x.shape[1], x.shape[2], x.shape[3])
            x_buff[:x.shape[0], :, :, :] = x
            x_buff[x.shape[0]:, :, :,
                   :] = x[-1].repeat(batch_size-x.shape[0], 1, 1, 1)
            y_buff[:x.shape[0], :, :, :] = y
            y_buff[x.shape[0]:, :, :,
                   :] = y[-1].repeat(batch_size-x.shape[0], 1, 1, 1)
            x = x_buff
            y = y_buff
        # Permute the order of dimension
        x = x.permute(1, 0, 2, 3)
        y = y.permute(1, 0, 2, 3)

        x_norm = normalizer.normalize(x).reshape(
            x.shape[0], -1, x.shape[3]).float().to(device)
        y_norm = normalizer.normalize(y).reshape(
            x.shape[0], -1, x.shape[3]).float().to(device)
        y = y.reshape(x.shape[0], -1, x.shape[3]).to(device)

        batch_graph = dgl.batch([graph]*batch_size)
        output = model(batch_graph, x_norm, y_norm, i, device)
        y_pred = normalizer.denormalize(output)
        loss = loss_fn(y_pred, y)
        total_loss.append(float(loss))
    return np.mean(total_loss)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    # Define the arguments
    parser.add_argument('--batch_size', type=int, default=64,
                        help="Size of batch for minibatch Training")
    parser.add_argument('--num_workers', type=int, default=0,
                        help="Number of workers for parallel dataloading")
    parser.add_argument('--model', type=str, default='dcrnn',
                        help="WHich model to use DCRNN vs GaAN")
    parser.add_argument('--gpu', type=int, default=-1,
                        help="GPU indexm -1 for CPU training")
    parser.add_argument('--diffsteps', type=int, default=2,
                        help="Step of constructing the diffusiob matrix")
    parser.add_argument('--num_heads', type=int, default=2,
                        help="Number of multiattention head")
    parser.add_argument('--decay_steps', type=int, default=2000,
                        help="Teacher forcing probability decay ratio")
    parser.add_argument('--lr', type=float, default=0.01,
                        help="Initial learning rate")
    parser.add_argument('--minimum_lr', type=float, default=2e-6,
                        help="Lower bound of learning rate")
    parser.add_argument('--dataset', type=str, default='LA',
                        help="dataset LA for METR_LA; BAY for PEMS_BAY")
    parser.add_argument('--epochs', type=int, default=100,
                        help="Number of epoches for training")
    parser.add_argument('--max_grad_norm', type=float, default=5.0,
                        help="Maximum gradient norm for update parameters")
    args = parser.parse_args()
    # Load the datasets
    if args.dataset == 'LA':
        g = METR_LAGraphDataset()
        train_data = METR_LATrainDataset()
        test_data = METR_LATestDataset()
        valid_data = METR_LAValidDataset()
    elif args.dataset == 'BAY':
        g = PEMS_BAYGraphDataset()
        train_data = PEMS_BAYTrainDataset()
        test_data = PEMS_BAYTestDataset()
        valid_data = PEMS_BAYValidDataset()

    if args.gpu == -1:
        device = torch.device('cpu')
    else:
        device = torch.device('cuda:{}'.format(args.gpu))

    train_loader = DataLoader(
        train_data, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=True)
    valid_loader = DataLoader(
        valid_data, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=True)
    test_loader = DataLoader(
        test_data, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=True)
    normalizer = NormalizationLayer(train_data.mean, train_data.std)

    if args.model == 'dcrnn':
        batch_g = dgl.batch([g]*args.batch_size).to(device)
        out_gs, in_gs = DiffConv.attach_graph(batch_g, args.diffsteps)
        net = partial(DiffConv, k=args.diffsteps,
                      in_graph_list=in_gs, out_graph_list=out_gs)
    elif args.model == 'gaan':
        net = partial(GatedGAT, map_feats=64, num_heads=args.num_heads)

    dcrnn = GraphRNN(in_feats=2,
                     out_feats=64,
                     seq_len=12,
                     num_layers=2,
                     net=net,
                     decay_steps=args.decay_steps).to(device)

    optimizer = torch.optim.Adam(dcrnn.parameters(), lr=args.lr)
    scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.99)

    loss_fn = masked_mae_loss

    for e in range(args.epochs):
        train_loss = train(dcrnn, g, train_loader, optimizer, scheduler,
                           normalizer, loss_fn, device, args)
        valid_loss = eval(dcrnn, g, valid_loader,
                          normalizer, loss_fn, device, args)
        test_loss = eval(dcrnn, g, test_loader,
                         normalizer, loss_fn, device, args)
        print("Epoch: {} Train Loss: {} Valid Loss: {} Test Loss: {}".format(e,
                                                                             train_loss,
                                                                             valid_loss,
                                                                             test_loss))