main.py 10.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import click
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import dgl

from logzero import logger
from pathlib import Path
from ruamel.yaml import YAML
from torch.utils.data import DataLoader
from dgl.data.utils import Subset
from sklearn.metrics import mean_absolute_error
from qm9 import QM9
from modules.initializers import GlorotOrthogonal
from modules.dimenet import DimeNet
from modules.dimenet_pp import DimeNetPP

def split_dataset(dataset, num_train, num_valid, shuffle=False, random_state=None):
    """Split dataset into training, validation and test set.

    Parameters
    ----------
    dataset
        We assume that ``len(dataset)`` gives the number of datapoints and ``dataset[i]``
        gives the ith datapoint.
    num_train : int
        Number of training datapoints.
    num_valid : int
        Number of validation datapoints.
    shuffle : bool, optional
        By default we perform a consecutive split of the dataset. If True,
        we will first randomly shuffle the dataset.
    random_state : None, int or array_like, optional
        Random seed used to initialize the pseudo-random number generator.
        This can be any integer between 0 and 2^32 - 1 inclusive, an array
        (or other sequence) of such integers, or None (the default value).
        If seed is None, then RandomState will try to read data from /dev/urandom
        (or the Windows analogue) if available or seed from the clock otherwise.

    Returns
    -------
    list of length 3
        Subsets for training, validation and test.
    """
    from itertools import accumulate
    num_data = len(dataset)
    assert num_train + num_valid < num_data
    lengths = [num_train, num_valid, num_data - num_train - num_valid]
    if shuffle:
        indices = np.random.RandomState(seed=random_state).permutation(num_data)
    else:
        indices = np.arange(num_data)
    return [Subset(dataset, indices[offset - length:offset]) for offset, length in zip(accumulate(lengths), lengths)]

@torch.no_grad()
def ema(ema_model, model, decay):
    msd = model.state_dict()
    for k, ema_v in ema_model.state_dict().items():
        model_v = msd[k].detach()
        ema_v.copy_(ema_v * decay + (1. - decay) * model_v)

def edge_init(edges):
    R_src, R_dst = edges.src['R'], edges.dst['R']
    dist = torch.sqrt(F.relu(torch.sum((R_src - R_dst) ** 2, -1)))
    # d: bond length, o: bond orientation
    return {'d': dist, 'o': R_src - R_dst}

def _collate_fn(batch):
    graphs, line_graphs, labels = map(list, zip(*batch))
    g, l_g = dgl.batch(graphs), dgl.batch(line_graphs)
    labels = torch.tensor(labels, dtype=torch.float32)
    return g, l_g, labels

def train(device, model, opt, loss_fn, train_loader):
    model.train()
    epoch_loss = 0
    num_samples = 0

    for g, l_g, labels in train_loader:
        g = g.to(device)
        l_g = l_g.to(device)
        labels = labels.to(device)
        logits = model(g, l_g)
        loss = loss_fn(logits, labels.view([-1, 1]))
        epoch_loss += loss.data.item() * len(labels)
        num_samples += len(labels)
        opt.zero_grad()
        loss.backward()
        opt.step()

    return epoch_loss / num_samples

@torch.no_grad()
def evaluate(device, model, valid_loader):
    model.eval()
    predictions_all, labels_all = [], []
    
    for g, l_g, labels in valid_loader:
        g = g.to(device)
        l_g = l_g.to(device)
        logits = model(g, l_g)
        labels_all.extend(labels)
        predictions_all.extend(logits.view(-1,).cpu().numpy())
    
    return np.array(predictions_all), np.array(labels_all)

@click.command()
@click.option('-m', '--model-cnf', type=click.Path(exists=True), help='Path of model config yaml.')
def main(model_cnf):
    yaml = YAML(typ='safe')
    model_cnf = yaml.load(Path(model_cnf))
    model_name, model_params, train_params, pretrain_params = model_cnf['name'], model_cnf['model'], model_cnf['train'], model_cnf['pretrain']
    logger.info(f'Model name: {model_name}')
    logger.info(f'Model params: {model_params}')
    logger.info(f'Train params: {train_params}')

    if model_params['targets'] in ['mu', 'homo', 'lumo', 'gap', 'zpve']:
        model_params['output_init'] = nn.init.zeros_
    else:
        # 'GlorotOrthogonal' for alpha, R2, U0, U, H, G, and Cv
        model_params['output_init'] = GlorotOrthogonal

    logger.info('Loading Data Set')
    dataset = QM9(label_keys=model_params['targets'], edge_funcs=[edge_init])

    # data split
    train_data, valid_data, test_data = split_dataset(dataset,
                                                      num_train=train_params['num_train'],
                                                      num_valid=train_params['num_valid'],
                                                      shuffle=True,
                                                      random_state=train_params['data_seed'])
    logger.info(f'Size of Training Set: {len(train_data)}')
    logger.info(f'Size of Validation Set: {len(valid_data)}')
    logger.info(f'Size of Test Set: {len(test_data)}')

    # data loader
    train_loader = DataLoader(train_data,
                              batch_size=train_params['batch_size'],
                              shuffle=True,
                              collate_fn=_collate_fn,
                              num_workers=train_params['num_workers'])

    valid_loader = DataLoader(valid_data,
                              batch_size=train_params['batch_size'],
                              shuffle=False,
                              collate_fn=_collate_fn,
                              num_workers=train_params['num_workers'])

    test_loader = DataLoader(test_data,
                             batch_size=train_params['batch_size'],
                             shuffle=False,
                             collate_fn=_collate_fn,
                             num_workers=train_params['num_workers'])

    # check cuda
    gpu = train_params['gpu']
    device = f'cuda:{gpu}' if gpu >= 0 and torch.cuda.is_available() else 'cpu'

    # model initialization
    logger.info('Loading Model')
    if model_name == 'dimenet':
        model = DimeNet(emb_size=model_params['emb_size'],
                        num_blocks=model_params['num_blocks'],
                        num_bilinear=model_params['num_bilinear'],
                        num_spherical=model_params['num_spherical'],
                        num_radial=model_params['num_radial'],
                        cutoff=model_params['cutoff'],
                        envelope_exponent=model_params['envelope_exponent'],
                        num_before_skip=model_params['num_before_skip'],
                        num_after_skip=model_params['num_after_skip'],
                        num_dense_output=model_params['num_dense_output'],
                        num_targets=len(model_params['targets']),
                        output_init=model_params['output_init']).to(device)
    elif model_name == 'dimenet++':
        model = DimeNetPP(emb_size=model_params['emb_size'],
                          out_emb_size=model_params['out_emb_size'],
                          int_emb_size=model_params['int_emb_size'],
                          basis_emb_size=model_params['basis_emb_size'],
                          num_blocks=model_params['num_blocks'],
                          num_spherical=model_params['num_spherical'],
                          num_radial=model_params['num_radial'],
                          cutoff=model_params['cutoff'],
                          envelope_exponent=model_params['envelope_exponent'],
                          num_before_skip=model_params['num_before_skip'],
                          num_after_skip=model_params['num_after_skip'],
                          num_dense_output=model_params['num_dense_output'],
                          num_targets=len(model_params['targets']),
                          extensive=model_params['extensive'],
                          output_init=model_params['output_init']).to(device)
    else:
        raise ValueError(f'Invalid Model Name {model_name}')

    if pretrain_params['flag']:
        torch_path = pretrain_params['path']
        target = model_params['targets'][0]
        model.load_state_dict(torch.load(f'{torch_path}/{target}.pt'))

        logger.info('Testing with Pretrained model')
        predictions, labels = evaluate(device, model, test_loader)
        test_mae = mean_absolute_error(labels, predictions)
        logger.info(f'Test MAE {test_mae:.4f}')

        return
    # define loss function and optimization
    loss_fn = nn.L1Loss()
    opt = optim.Adam(model.parameters(), lr=train_params['lr'], weight_decay=train_params['weight_decay'], amsgrad=True)
    scheduler = optim.lr_scheduler.StepLR(opt, train_params['step_size'], gamma=train_params['gamma'])

    # model training
    best_mae = 1e9
    no_improvement = 0
    
    # EMA for valid and test
    logger.info('EMA Init')
    ema_model = copy.deepcopy(model)
    for p in ema_model.parameters():
        p.requires_grad_(False)
    
    best_model = copy.deepcopy(ema_model)

    logger.info('Training')
    for i in range(train_params['epochs']):
        train_loss = train(device, model, opt, loss_fn, train_loader)
        ema(ema_model, model, train_params['ema_decay'])
        if i % train_params['interval'] == 0:
            predictions, labels = evaluate(device, ema_model, valid_loader)

            valid_mae = mean_absolute_error(labels, predictions)
            logger.info(f'Epoch {i} | Train Loss {train_loss:.4f} | Val MAE {valid_mae:.4f}')

            if valid_mae > best_mae:
                no_improvement += 1
                if no_improvement == train_params['early_stopping']:
                    logger.info('Early stop.')
                    break
            else:
                no_improvement = 0
                best_mae = valid_mae
                best_model = copy.deepcopy(ema_model)
        else:
            logger.info(f'Epoch {i} | Train Loss {train_loss:.4f}')
        
        scheduler.step()

    logger.info('Testing')
    predictions, labels = evaluate(device, best_model, test_loader)
    test_mae = mean_absolute_error(labels, predictions)
    logger.info('Test MAE {:.4f}'.format(test_mae))

if __name__ == "__main__":
    main()