model.py 6.25 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch as th
import numpy as np
import torch.nn as nn
import dgl.function as fn


class CAREConv(nn.Module):
    """One layer of CARE-GNN."""

    def __init__(self, in_dim, out_dim, num_classes, edges, activation=None, step_size=0.02):
        super(CAREConv, self).__init__()

        self.activation = activation
        self.step_size = step_size
        self.in_dim = in_dim
        self.out_dim = out_dim
        self.num_classes = num_classes
        self.edges = edges
        self.dist = {}

        self.linear = nn.Linear(self.in_dim, self.out_dim)
        self.MLP = nn.Linear(self.in_dim, self.num_classes)

        self.p = {}
        self.last_avg_dist = {}
        self.f = {}
        self.cvg = {}
        for etype in edges:
            self.p[etype] = 0.5
            self.last_avg_dist[etype] = 0
            self.f[etype] = []
            self.cvg[etype] = False

    def _calc_distance(self, edges):
        # formula 2
        d = th.norm(th.tanh(self.MLP(edges.src['h'])) - th.tanh(self.MLP(edges.dst['h'])), 1, 1)
        return {'d': d}

    def _top_p_sampling(self, g, p):
        # this implementation is low efficient
        # optimization requires dgl.sampling.select_top_p requested in issue #3100
        dist = g.edata['d']
        neigh_list = []
        for node in g.nodes():
            edges = g.in_edges(node, form='eid')
46
            num_neigh = th.ceil(g.in_degrees(node) * p).int().item()
47
            neigh_dist = dist[edges]
48
49
50
51
            if neigh_dist.shape[0] > num_neigh:
                neigh_index = np.argpartition(neigh_dist.cpu().detach(), num_neigh)[:num_neigh]
            else:
                neigh_index = np.arange(num_neigh)
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
            neigh_list.append(edges[neigh_index])
        return th.cat(neigh_list)

    def forward(self, g, feat):
        with g.local_scope():
            g.ndata['h'] = feat

            hr = {}
            for i, etype in enumerate(g.canonical_etypes):
                g.apply_edges(self._calc_distance, etype=etype)
                self.dist[etype] = g.edges[etype].data['d']
                sampled_edges = self._top_p_sampling(g[etype], self.p[etype])

                # formula 8
                g.send_and_recv(sampled_edges, fn.copy_u('h', 'm'), fn.mean('m', 'h_%s' % etype[1]), etype=etype)
                hr[etype] = g.ndata['h_%s' % etype[1]]
                if self.activation is not None:
                    hr[etype] = self.activation(hr[etype])

            # formula 9 using mean as inter-relation aggregator
            p_tensor = th.Tensor(list(self.p.values())).view(-1, 1, 1).to(g.device)
            h_homo = th.sum(th.stack(list(hr.values())) * p_tensor, dim=0)
            h_homo += feat
            if self.activation is not None:
                h_homo = self.activation(h_homo)

            return self.linear(h_homo)


class CAREGNN(nn.Module):
    def __init__(self,
                 in_dim,
                 num_classes,
                 hid_dim=64,
                 edges=None,
                 num_layers=2,
                 activation=None,
                 step_size=0.02):
        super(CAREGNN, self).__init__()
        self.in_dim = in_dim
        self.hid_dim = hid_dim
        self.num_classes = num_classes
        self.edges = edges
        self.activation = activation
        self.step_size = step_size
        self.num_layers = num_layers

        self.layers = nn.ModuleList()

        if self.num_layers == 1:
            # Single layer
            self.layers.append(CAREConv(self.in_dim,
                                        self.num_classes,
                                        self.num_classes,
                                        self.edges,
                                        activation=self.activation,
                                        step_size=self.step_size))

        else:
            # Input layer
            self.layers.append(CAREConv(self.in_dim,
                                        self.hid_dim,
                                        self.num_classes,
                                        self.edges,
                                        activation=self.activation,
                                        step_size=self.step_size))

            # Hidden layers with n - 2 layers
            for i in range(self.num_layers - 2):
                self.layers.append(CAREConv(self.hid_dim,
                                            self.hid_dim,
                                            self.num_classes,
                                            self.edges,
                                            activation=self.activation,
                                            step_size=self.step_size))

            # Output layer
            self.layers.append(CAREConv(self.hid_dim,
                                        self.num_classes,
                                        self.num_classes,
                                        self.edges,
                                        activation=self.activation,
                                        step_size=self.step_size))

    def forward(self, graph, feat):
        # For full graph training, directly use the graph
        # formula 4
        sim = th.tanh(self.layers[0].MLP(feat))

        # Forward of n layers of CARE-GNN
        for layer in self.layers:
            feat = layer(graph, feat)

        return feat, sim

    def RLModule(self, graph, epoch, idx):
        for layer in self.layers:
            for etype in self.edges:
                if not layer.cvg[etype]:
                    # formula 5
                    eid = graph.in_edges(idx, form='eid', etype=etype)
                    avg_dist = th.mean(layer.dist[etype][eid])

                    # formula 6
                    if layer.last_avg_dist[etype] < avg_dist:
                        if layer.p[etype] - self.step_size > 0:
                            layer.p[etype] -= self.step_size
                        layer.f[etype].append(-1)
                    else:
                        if layer.p[etype] + self.step_size <= 1:
                            layer.p[etype] += self.step_size
                        layer.f[etype].append(+1)
                    layer.last_avg_dist[etype] = avg_dist

                    # formula 7
                    if epoch >= 9 and abs(sum(layer.f[etype][-10:])) <= 2:
                        layer.cvg[etype] = True