main.py 13.6 KB
Newer Older
Linfang He's avatar
Linfang He committed
1
2
3
4
5
6
7
8
9
10
from collections import defaultdict
import math
import os
import sys
import time

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
11
from tqdm.auto import tqdm
Linfang He's avatar
Linfang He committed
12
13
14
15
16
17
18
19
20
from numpy import random
from torch.nn.parameter import Parameter
import dgl
import dgl.function as fn

from utils import *


def get_graph(network_data, vocab):
21
22
    """ Build graph, treat all nodes as the same type

Linfang He's avatar
Linfang He committed
23
24
25
26
27
28
29
30
31
32
    Parameters
    ----------
    network_data: a dict
        keys describing the edge types, values representing edges
    vocab: a dict
        mapping node IDs to node indices
    Output
    ------
    DGLHeteroGraph
        a heterogenous graph, with one node type and different edge types
33
    """
Linfang He's avatar
Linfang He committed
34
    graphs = []
35

36
    node_type = "_N"  # '_N' can be replaced by an arbitrary name
37
38
    data_dict = dict()
    num_nodes_dict = {node_type: len(vocab)}
Linfang He's avatar
Linfang He committed
39
40
41

    for edge_type in network_data:
        tmp_data = network_data[edge_type]
Mufei Li's avatar
Mufei Li committed
42
43
        src = []
        dst = []
Linfang He's avatar
Linfang He committed
44
        for edge in tmp_data:
Mufei Li's avatar
Mufei Li committed
45
46
47
            src.extend([vocab[edge[0]], vocab[edge[1]]])
            dst.extend([vocab[edge[1]], vocab[edge[0]]])
        data_dict[(node_type, edge_type, node_type)] = (src, dst)
48
    graph = dgl.heterograph(data_dict, num_nodes_dict)
49

Linfang He's avatar
Linfang He committed
50
51
52
53
54
55
56
    return graph


class NeighborSampler(object):
    def __init__(self, g, num_fanouts):
        self.g = g
        self.num_fanouts = num_fanouts
57

Linfang He's avatar
Linfang He committed
58
59
60
61
62
63
64
65
66
    def sample(self, pairs):
        heads, tails, types = zip(*pairs)
        seeds, head_invmap = torch.unique(torch.LongTensor(heads), return_inverse=True)
        blocks = []
        for fanout in reversed(self.num_fanouts):
            sampled_graph = dgl.sampling.sample_neighbors(self.g, seeds, fanout)
            sampled_block = dgl.to_block(sampled_graph, seeds)
            seeds = sampled_block.srcdata[dgl.NID]
            blocks.insert(0, sampled_block)
67
68
69
70
71
72
        return (
            blocks,
            torch.LongTensor(head_invmap),
            torch.LongTensor(tails),
            torch.LongTensor(types),
        )
Linfang He's avatar
Linfang He committed
73
74
75


class DGLGATNE(nn.Module):
76
77
78
79
80
81
82
83
84
    def __init__(
        self,
        num_nodes,
        embedding_size,
        embedding_u_size,
        edge_types,
        edge_type_count,
        dim_a,
    ):
Linfang He's avatar
Linfang He committed
85
86
87
88
89
90
91
92
93
        super(DGLGATNE, self).__init__()
        self.num_nodes = num_nodes
        self.embedding_size = embedding_size
        self.embedding_u_size = embedding_u_size
        self.edge_types = edge_types
        self.edge_type_count = edge_type_count
        self.dim_a = dim_a

        self.node_embeddings = Parameter(torch.FloatTensor(num_nodes, embedding_size))
94
95
96
97
98
99
100
101
102
        self.node_type_embeddings = Parameter(
            torch.FloatTensor(num_nodes, edge_type_count, embedding_u_size)
        )
        self.trans_weights = Parameter(
            torch.FloatTensor(edge_type_count, embedding_u_size, embedding_size)
        )
        self.trans_weights_s1 = Parameter(
            torch.FloatTensor(edge_type_count, embedding_u_size, dim_a)
        )
Linfang He's avatar
Linfang He committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        self.trans_weights_s2 = Parameter(torch.FloatTensor(edge_type_count, dim_a, 1))

        self.reset_parameters()

    def reset_parameters(self):
        self.node_embeddings.data.uniform_(-1.0, 1.0)
        self.node_type_embeddings.data.uniform_(-1.0, 1.0)
        self.trans_weights.data.normal_(std=1.0 / math.sqrt(self.embedding_size))
        self.trans_weights_s1.data.normal_(std=1.0 / math.sqrt(self.embedding_size))
        self.trans_weights_s2.data.normal_(std=1.0 / math.sqrt(self.embedding_size))

    # embs: [batch_size, embedding_size]
    def forward(self, block):
        input_nodes = block.srcdata[dgl.NID]
        output_nodes = block.dstdata[dgl.NID]
        batch_size = block.number_of_dst_nodes()
        node_embed = self.node_embeddings
        node_type_embed = []

        with block.local_scope():
            for i in range(self.edge_type_count):
                edge_type = self.edge_types[i]
                block.srcdata[edge_type] = self.node_type_embeddings[input_nodes, i]
                block.dstdata[edge_type] = self.node_type_embeddings[output_nodes, i]
127
128
129
                block.update_all(
                    fn.copy_u(edge_type, "m"), fn.sum("m", edge_type), etype=edge_type
                )
Linfang He's avatar
Linfang He committed
130
                node_type_embed.append(block.dstdata[edge_type])
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

            node_type_embed = torch.stack(node_type_embed, 1)
            tmp_node_type_embed = node_type_embed.unsqueeze(2).view(
                -1, 1, self.embedding_u_size
            )
            trans_w = (
                self.trans_weights.unsqueeze(0)
                .repeat(batch_size, 1, 1, 1)
                .view(-1, self.embedding_u_size, self.embedding_size)
            )
            trans_w_s1 = (
                self.trans_weights_s1.unsqueeze(0)
                .repeat(batch_size, 1, 1, 1)
                .view(-1, self.embedding_u_size, self.dim_a)
            )
            trans_w_s2 = (
                self.trans_weights_s2.unsqueeze(0)
                .repeat(batch_size, 1, 1, 1)
                .view(-1, self.dim_a, 1)
            )

            attention = (
                F.softmax(
                    torch.matmul(
                        torch.tanh(torch.matmul(tmp_node_type_embed, trans_w_s1)),
                        trans_w_s2,
                    )
                    .squeeze(2)
                    .view(-1, self.edge_type_count),
                    dim=1,
                )
                .unsqueeze(1)
                .repeat(1, self.edge_type_count, 1)
            )

            node_type_embed = torch.matmul(attention, node_type_embed).view(
                -1, 1, self.embedding_u_size
Linfang He's avatar
Linfang He committed
168
            )
169
170
171
172
            node_embed = node_embed[output_nodes].unsqueeze(1).repeat(
                1, self.edge_type_count, 1
            ) + torch.matmul(node_type_embed, trans_w).view(
                -1, self.edge_type_count, self.embedding_size
Linfang He's avatar
Linfang He committed
173
174
            )
            last_node_embed = F.normalize(node_embed, dim=2)
175

Linfang He's avatar
Linfang He committed
176
177
178
179
180
181
            return last_node_embed  # [batch_size, edge_type_count, embedding_size]


class NSLoss(nn.Module):
    def __init__(self, num_nodes, num_sampled, embedding_size):
        super(NSLoss, self).__init__()
182
183
184
185
        self.num_nodes = num_nodes
        self.num_sampled = num_sampled
        self.embedding_size = embedding_size
        self.weights = Parameter(torch.FloatTensor(num_nodes, embedding_size))
Linfang He's avatar
Linfang He committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        # [ (log(i+2) - log(i+1)) / log(num_nodes + 1)]
        self.sample_weights = F.normalize(
            torch.Tensor(
                [
                    (math.log(k + 2) - math.log(k + 1)) / math.log(num_nodes + 1)
                    for k in range(num_nodes)
                ]
            ),
            dim=0,
        )

        self.reset_parameters()

    def reset_parameters(self):
        self.weights.data.normal_(std=1.0 / math.sqrt(self.embedding_size))

    def forward(self, input, embs, label):
        n = input.shape[0]
        log_target = torch.log(
            torch.sigmoid(torch.sum(torch.mul(embs, self.weights[label]), 1))
        )
        negs = torch.multinomial(
            self.sample_weights, self.num_sampled * n, replacement=True
        ).view(n, self.num_sampled)
        noise = torch.neg(self.weights[negs])
        sum_log_sampled = torch.sum(
            torch.log(torch.sigmoid(torch.bmm(noise, embs.unsqueeze(2)))), 1
        ).squeeze()

        loss = log_target + sum_log_sampled
        return -loss.sum() / n


def train_model(network_data):
    index2word, vocab, type_nodes = generate_vocab(network_data)

222
223
224
225
226
227
228
229
230
231
    edge_types = list(network_data.keys())
    num_nodes = len(index2word)
    edge_type_count = len(edge_types)
    epochs = args.epoch
    batch_size = args.batch_size
    embedding_size = args.dimensions
    embedding_u_size = args.edge_dim
    u_num = edge_type_count
    num_sampled = args.negative_samples
    dim_a = args.att_dim
Linfang He's avatar
Linfang He committed
232
233
    att_head = 1
    neighbor_samples = args.neighbor_samples
234
    num_workers = args.workers
Linfang He's avatar
Linfang He committed
235

236
237
238
    device = torch.device(
        "cuda" if args.gpu is not None and torch.cuda.is_available() else "cpu"
    )
Linfang He's avatar
Linfang He committed
239
240
241
242
243

    g = get_graph(network_data, vocab)
    all_walks = []
    for i in range(edge_type_count):
        nodes = torch.LongTensor(type_nodes[i] * args.num_walks)
244
245
246
        traces, types = dgl.sampling.random_walk(
            g, nodes, metapath=[edge_types[i]] * (neighbor_samples - 1)
        )
Linfang He's avatar
Linfang He committed
247
248
        all_walks.append(traces)

249
    train_pairs = generate_pairs(all_walks, args.window_size, num_workers)
Linfang He's avatar
Linfang He committed
250
251
    neighbor_sampler = NeighborSampler(g, [neighbor_samples])
    train_dataloader = torch.utils.data.DataLoader(
252
253
254
255
256
257
258
259
260
        train_pairs,
        batch_size=batch_size,
        collate_fn=neighbor_sampler.sample,
        shuffle=True,
        num_workers=num_workers,
        pin_memory=True,
    )
    model = DGLGATNE(
        num_nodes, embedding_size, embedding_u_size, edge_types, edge_type_count, dim_a
Linfang He's avatar
Linfang He committed
261
262
263
264
265
    )
    nsloss = NSLoss(num_nodes, num_sampled, embedding_size)
    model.to(device)
    nsloss.to(device)

266
267
268
    optimizer = torch.optim.Adam(
        [{"params": model.parameters()}, {"params": nsloss.parameters()}], lr=1e-3
    )
Linfang He's avatar
Linfang He committed
269
270
271
272
273
274
275

    best_score = 0
    patience = 0
    for epoch in range(epochs):
        model.train()
        random.shuffle(train_pairs)

276
        data_iter = tqdm(
Linfang He's avatar
Linfang He committed
277
278
279
280
281
282
283
284
285
286
287
            train_dataloader,
            desc="epoch %d" % (epoch),
            total=(len(train_pairs) + (batch_size - 1)) // batch_size,
        )
        avg_loss = 0.0

        for i, (block, head_invmap, tails, block_types) in enumerate(data_iter):
            optimizer.zero_grad()
            # embs: [batch_size, edge_type_count, embedding_size]
            block_types = block_types.to(device)
            embs = model(block[0].to(device))[head_invmap]
288
289
290
291
292
293
294
295
            embs = embs.gather(
                1, block_types.view(-1, 1, 1).expand(embs.shape[0], 1, embs.shape[2])
            )[:, 0]
            loss = nsloss(
                block[0].dstdata[dgl.NID][head_invmap].to(device),
                embs,
                tails.to(device),
            )
Linfang He's avatar
Linfang He committed
296
297
298
299
            loss.backward()
            optimizer.step()
            avg_loss += loss.item()

300
301
302
303
304
305
306
            post_fix = {
                "epoch": epoch,
                "iter": i,
                "avg_loss": avg_loss / (i + 1),
                "loss": loss.item(),
            }
            data_iter.set_postfix(post_fix)
Linfang He's avatar
Linfang He committed
307
308
309
310
311

        model.eval()
        # {'1': {}, '2': {}}
        final_model = dict(zip(edge_types, [dict() for _ in range(edge_type_count)]))
        for i in range(num_nodes):
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
            train_inputs = (
                torch.tensor([i for _ in range(edge_type_count)])
                .unsqueeze(1)
                .to(device)
            )  # [i, i]
            train_types = (
                torch.tensor(list(range(edge_type_count))).unsqueeze(1).to(device)
            )  # [0, 1]
            pairs = torch.cat(
                (train_inputs, train_inputs, train_types), dim=1
            )  # (2, 3)
            (
                train_blocks,
                train_invmap,
                fake_tails,
                train_types,
            ) = neighbor_sampler.sample(pairs)
Linfang He's avatar
Linfang He committed
329
330

            node_emb = model(train_blocks[0].to(device))[train_invmap]
331
332
333
334
335
            node_emb = node_emb.gather(
                1,
                train_types.to(device)
                .view(-1, 1, 1)
                .expand(node_emb.shape[0], 1, node_emb.shape[2]),
Linfang He's avatar
Linfang He committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
            )[:, 0]

            for j in range(edge_type_count):
                final_model[edge_types[j]][index2word[i]] = (
                    node_emb[j].cpu().detach().numpy()
                )

        valid_aucs, valid_f1s, valid_prs = [], [], []
        test_aucs, test_f1s, test_prs = [], [], []
        for i in range(edge_type_count):
            if args.eval_type == "all" or edge_types[i] in args.eval_type.split(","):
                tmp_auc, tmp_f1, tmp_pr = evaluate(
                    final_model[edge_types[i]],
                    valid_true_data_by_edge[edge_types[i]],
                    valid_false_data_by_edge[edge_types[i]],
351
                    num_workers,
Linfang He's avatar
Linfang He committed
352
353
354
355
356
357
358
359
360
                )
                valid_aucs.append(tmp_auc)
                valid_f1s.append(tmp_f1)
                valid_prs.append(tmp_pr)

                tmp_auc, tmp_f1, tmp_pr = evaluate(
                    final_model[edge_types[i]],
                    testing_true_data_by_edge[edge_types[i]],
                    testing_false_data_by_edge[edge_types[i]],
361
                    num_workers,
Linfang He's avatar
Linfang He committed
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
                )
                test_aucs.append(tmp_auc)
                test_f1s.append(tmp_f1)
                test_prs.append(tmp_pr)
        print("valid auc:", np.mean(valid_aucs))
        print("valid pr:", np.mean(valid_prs))
        print("valid f1:", np.mean(valid_f1s))

        average_auc = np.mean(test_aucs)
        average_f1 = np.mean(test_f1s)
        average_pr = np.mean(test_prs)

        cur_score = np.mean(valid_aucs)
        if cur_score > best_score:
            best_score = cur_score
            patience = 0
        else:
            patience += 1
            if patience > args.patience:
                print("Early Stopping")
                break
    return average_auc, average_f1, average_pr


if __name__ == "__main__":
    args = parse_args()
    file_name = args.input
    print(args)

    training_data_by_type = load_training_data(file_name + "/train.txt")
    valid_true_data_by_edge, valid_false_data_by_edge = load_testing_data(
        file_name + "/valid.txt"
    )
    testing_true_data_by_edge, testing_false_data_by_edge = load_testing_data(
        file_name + "/test.txt"
    )
    start = time.time()
    average_auc, average_f1, average_pr = train_model(training_data_by_type)
    end = time.time()

    print("Overall ROC-AUC:", average_auc)
    print("Overall PR-AUC", average_pr)
    print("Overall F1:", average_f1)
405
    print("Training Time", end - start)