train_faster_rcnn.py 27.6 KB
Newer Older
1
2
3
4
5
"""Train Faster-RCNN end to end."""
import argparse
import os

# disable autotune
6
os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"] = "0"
7
8
import logging
import time
9

10
import gluoncv as gcv
11
12
13
import mxnet as mx
import numpy as np
from data import *
14
15
from gluoncv import data as gdata
from gluoncv import utils as gutils
16
17
18
from gluoncv.data.batchify import Append, FasterRCNNTrainBatchify, Tuple
from gluoncv.data.transforms.presets.rcnn import (
    FasterRCNNDefaultTrainTransform, FasterRCNNDefaultValTransform)
19
20
from gluoncv.model_zoo import get_model
from gluoncv.utils.metrics.coco_detection import COCODetectionMetric
21
22
23
24
25
26
27
28
from gluoncv.utils.metrics.rcnn import (RCNNAccMetric, RCNNL1LossMetric,
                                        RPNAccMetric, RPNL1LossMetric)
from gluoncv.utils.metrics.voc_detection import VOC07MApMetric
from gluoncv.utils.parallel import Parallel, Parallelizable
from model import (faster_rcnn_resnet50_v1b_custom,
                   faster_rcnn_resnet101_v1d_custom)
from mxnet import autograd, gluon
from mxnet.contrib import amp
29
30
31
32
33
34
35
36

try:
    import horovod.mxnet as hvd
except ImportError:
    hvd = None


def parse_args():
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    parser = argparse.ArgumentParser(
        description="Train Faster-RCNN networks e2e."
    )
    parser.add_argument(
        "--network",
        type=str,
        default="resnet101_v1d",
        help="Base network name which serves as feature extraction base.",
    )
    parser.add_argument(
        "--dataset",
        type=str,
        default="visualgenome",
        help="Training dataset. Now support voc and coco.",
    )
    parser.add_argument(
        "--num-workers",
        "-j",
        dest="num_workers",
        type=int,
        default=8,
        help="Number of data workers, you can use larger "
        "number to accelerate data loading, "
        "if your CPU and GPUs are powerful.",
    )
    parser.add_argument(
        "--batch-size", type=int, default=8, help="Training mini-batch size."
    )
    parser.add_argument(
        "--gpus",
        type=str,
        default="0",
        help="Training with GPUs, you can specify 1,3 for example.",
    )
    parser.add_argument(
        "--epochs", type=str, default="", help="Training epochs."
    )
    parser.add_argument(
        "--resume",
        type=str,
        default="",
        help="Resume from previously saved parameters if not None. "
        "For example, you can resume from ./faster_rcnn_xxx_0123.params",
    )
    parser.add_argument(
        "--start-epoch",
        type=int,
        default=0,
        help="Starting epoch for resuming, default is 0 for new training."
        "You can specify it to 100 for example to start from 100 epoch.",
    )
    parser.add_argument(
        "--lr",
        type=str,
        default="",
        help="Learning rate, default is 0.001 for voc single gpu training.",
    )
    parser.add_argument(
        "--lr-decay",
        type=float,
        default=0.1,
        help="decay rate of learning rate. default is 0.1.",
    )
    parser.add_argument(
        "--lr-decay-epoch",
        type=str,
        default="",
        help="epochs at which learning rate decays. default is 14,20 for voc.",
    )
    parser.add_argument(
        "--lr-warmup",
        type=str,
        default="",
        help="warmup iterations to adjust learning rate, default is 0 for voc.",
    )
    parser.add_argument(
        "--lr-warmup-factor",
        type=float,
        default=1.0 / 3.0,
        help="warmup factor of base lr.",
    )
    parser.add_argument(
        "--momentum",
        type=float,
        default=0.9,
        help="SGD momentum, default is 0.9",
    )
    parser.add_argument(
        "--wd",
        type=str,
        default="",
        help="Weight decay, default is 5e-4 for voc",
    )
    parser.add_argument(
        "--log-interval",
        type=int,
        default=100,
        help="Logging mini-batch interval. Default is 100.",
    )
    parser.add_argument(
        "--save-prefix", type=str, default="", help="Saving parameter prefix"
    )
    parser.add_argument(
        "--save-interval",
        type=int,
        default=1,
        help="Saving parameters epoch interval, best model will always be saved.",
    )
    parser.add_argument(
        "--val-interval",
        type=int,
        default=1,
        help="Epoch interval for validation, increase the number will reduce the "
        "training time if validation is slow.",
    )
    parser.add_argument(
        "--seed", type=int, default=233, help="Random seed to be fixed."
    )
    parser.add_argument(
        "--verbose",
        dest="verbose",
        action="store_true",
        help="Print helpful debugging info once set.",
    )
    parser.add_argument(
        "--mixup", action="store_true", help="Use mixup training."
    )
    parser.add_argument(
        "--no-mixup-epochs",
        type=int,
        default=20,
        help="Disable mixup training if enabled in the last N epochs.",
    )
170
171

    # Norm layer options
172
173
174
175
176
177
178
179
180
181
    parser.add_argument(
        "--norm-layer",
        type=str,
        default=None,
        help="Type of normalization layer to use. "
        "If set to None, backbone normalization layer will be fixed,"
        " and no normalization layer will be used. "
        "Currently supports 'bn', and None, default is None."
        "Note that if horovod is enabled, sync bn will not work correctly.",
    )
182
183

    # FPN options
184
185
186
187
188
    parser.add_argument(
        "--use-fpn",
        action="store_true",
        help="Whether to use feature pyramid network.",
    )
189
190

    # Performance options
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    parser.add_argument(
        "--disable-hybridization",
        action="store_true",
        help="Whether to disable hybridize the model. "
        "Memory usage and speed will decrese.",
    )
    parser.add_argument(
        "--static-alloc",
        action="store_true",
        help="Whether to use static memory allocation. Memory usage will increase.",
    )
    parser.add_argument(
        "--amp",
        action="store_true",
        help="Use MXNet AMP for mixed precision training.",
    )
    parser.add_argument(
        "--horovod",
        action="store_true",
        help="Use MXNet Horovod for distributed training. Must be run with OpenMPI. "
        "--gpus is ignored when using --horovod.",
    )
    parser.add_argument(
        "--executor-threads",
        type=int,
        default=1,
        help="Number of threads for executor for scheduling ops. "
        "More threads may incur higher GPU memory footprint, "
        "but may speed up throughput. Note that when horovod is used, "
        "it is set to 1.",
    )
    parser.add_argument(
        "--kv-store",
        type=str,
        default="nccl",
        help="KV store options. local, device, nccl, dist_sync, dist_device_sync, "
        "dist_async are available.",
    )
229
230
231
232
233

    args = parser.parse_args()

    if args.horovod:
        if hvd is None:
234
235
236
            raise SystemExit(
                "Horovod not found, please check if you installed it correctly."
            )
237
238
        hvd.init()

239
    if args.dataset == "voc":
240
        args.epochs = int(args.epochs) if args.epochs else 20
241
242
243
        args.lr_decay_epoch = (
            args.lr_decay_epoch if args.lr_decay_epoch else "14,20"
        )
244
245
246
        args.lr = float(args.lr) if args.lr else 0.001
        args.lr_warmup = args.lr_warmup if args.lr_warmup else -1
        args.wd = float(args.wd) if args.wd else 5e-4
247
    elif args.dataset == "visualgenome":
248
        args.epochs = int(args.epochs) if args.epochs else 20
249
250
251
        args.lr_decay_epoch = (
            args.lr_decay_epoch if args.lr_decay_epoch else "14,20"
        )
252
253
254
        args.lr = float(args.lr) if args.lr else 0.001
        args.lr_warmup = args.lr_warmup if args.lr_warmup else -1
        args.wd = float(args.wd) if args.wd else 5e-4
255
    elif args.dataset == "coco":
256
        args.epochs = int(args.epochs) if args.epochs else 26
257
258
259
        args.lr_decay_epoch = (
            args.lr_decay_epoch if args.lr_decay_epoch else "17,23"
        )
260
261
262
263
264
265
266
        args.lr = float(args.lr) if args.lr else 0.01
        args.lr_warmup = args.lr_warmup if args.lr_warmup else 1000
        args.wd = float(args.wd) if args.wd else 1e-4
    return args


def get_dataset(dataset, args):
267
    if dataset.lower() == "voc":
268
        train_dataset = gdata.VOCDetection(
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
            splits=[(2007, "trainval"), (2012, "trainval")]
        )
        val_dataset = gdata.VOCDetection(splits=[(2007, "test")])
        val_metric = VOC07MApMetric(
            iou_thresh=0.5, class_names=val_dataset.classes
        )
    elif dataset.lower() == "coco":
        train_dataset = gdata.COCODetection(
            splits="instances_train2017", use_crowd=False
        )
        val_dataset = gdata.COCODetection(
            splits="instances_val2017", skip_empty=False
        )
        val_metric = COCODetectionMetric(
            val_dataset, args.save_prefix + "_eval", cleanup=True
        )
    elif dataset.lower() == "visualgenome":
        train_dataset = VGObject(
            root=os.path.join("~", ".mxnet", "datasets", "visualgenome"),
            splits="detections_train",
            use_crowd=False,
        )
        val_dataset = VGObject(
            root=os.path.join("~", ".mxnet", "datasets", "visualgenome"),
            splits="detections_val",
            skip_empty=False,
        )
        val_metric = COCODetectionMetric(
            val_dataset, args.save_prefix + "_eval", cleanup=True
        )
299
    else:
300
301
302
        raise NotImplementedError(
            "Dataset: {} not implemented.".format(dataset)
        )
303
304
    if args.mixup:
        from gluoncv.data.mixup import detection
305

306
307
308
309
        train_dataset = detection.MixupDetection(train_dataset)
    return train_dataset, val_dataset, val_metric


310
311
312
313
314
315
316
317
318
319
def get_dataloader(
    net,
    train_dataset,
    val_dataset,
    train_transform,
    val_transform,
    batch_size,
    num_shards,
    args,
):
320
321
    """Get dataloader."""
    train_bfn = FasterRCNNTrainBatchify(net, num_shards)
322
    if hasattr(train_dataset, "get_im_aspect_ratio"):
323
324
        im_aspect_ratio = train_dataset.get_im_aspect_ratio()
    else:
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
        im_aspect_ratio = [1.0] * len(train_dataset)
    train_sampler = gcv.nn.sampler.SplitSortedBucketSampler(
        im_aspect_ratio,
        batch_size,
        num_parts=hvd.size() if args.horovod else 1,
        part_index=hvd.rank() if args.horovod else 0,
        shuffle=True,
    )
    train_loader = mx.gluon.data.DataLoader(
        train_dataset.transform(
            train_transform(
                net.short,
                net.max_size,
                net,
                ashape=net.ashape,
                multi_stage=args.use_fpn,
            )
        ),
        batch_sampler=train_sampler,
        batchify_fn=train_bfn,
        num_workers=args.num_workers,
    )
347
348
349
350
    if val_dataset is None:
        val_loader = None
    else:
        val_bfn = Tuple(*[Append() for _ in range(3)])
351
352
353
        short = (
            net.short[-1] if isinstance(net.short, (tuple, list)) else net.short
        )
354
355
        # validation use 1 sample per device
        val_loader = mx.gluon.data.DataLoader(
356
357
358
359
360
361
362
            val_dataset.transform(val_transform(short, net.max_size)),
            num_shards,
            False,
            batchify_fn=val_bfn,
            last_batch="keep",
            num_workers=args.num_workers,
        )
363
364
365
    return train_loader, val_loader


366
367
368
def save_params(
    net, logger, best_map, current_map, epoch, save_interval, prefix
):
369
370
    current_map = float(current_map)
    if current_map > best_map[0]:
371
372
373
374
375
        logger.info(
            "[Epoch {}] mAP {} higher than current best {} saving to {}".format(
                epoch, current_map, best_map, "{:s}_best.params".format(prefix)
            )
        )
376
        best_map[0] = current_map
377
378
379
        net.save_parameters("{:s}_best.params".format(prefix))
        with open(prefix + "_best_map.log", "a") as f:
            f.write("{:04d}:\t{:.4f}\n".format(epoch, current_map))
380
    if save_interval and (epoch + 1) % save_interval == 0:
381
382
383
384
385
386
387
388
389
        logger.info(
            "[Epoch {}] Saving parameters to {}".format(
                epoch,
                "{:s}_{:04d}_{:.4f}.params".format(prefix, epoch, current_map),
            )
        )
        net.save_parameters(
            "{:s}_{:04d}_{:.4f}.params".format(prefix, epoch, current_map)
        )
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432


def split_and_load(batch, ctx_list):
    """Split data to 1 batch each device."""
    new_batch = []
    for i, data in enumerate(batch):
        if isinstance(data, (list, tuple)):
            new_data = [x.as_in_context(ctx) for x, ctx in zip(data, ctx_list)]
        else:
            new_data = [data.as_in_context(ctx_list[0])]
        new_batch.append(new_data)
    return new_batch


def validate(net, val_data, ctx, eval_metric, args):
    """Test on validation dataset."""
    clipper = gcv.nn.bbox.BBoxClipToImage()
    eval_metric.reset()
    if not args.disable_hybridization:
        # input format is differnet than training, thus rehybridization is needed.
        net.hybridize(static_alloc=args.static_alloc)
    for i, batch in enumerate(val_data):
        batch = split_and_load(batch, ctx_list=ctx)
        det_bboxes = []
        det_ids = []
        det_scores = []
        gt_bboxes = []
        gt_ids = []
        gt_difficults = []
        for x, y, im_scale in zip(*batch):
            # get prediction results
            ids, scores, bboxes = net(x)
            det_ids.append(ids)
            det_scores.append(scores)
            # clip to image size
            det_bboxes.append(clipper(bboxes, x))
            # rescale to original resolution
            im_scale = im_scale.reshape((-1)).asscalar()
            det_bboxes[-1] *= im_scale
            # split ground truths
            gt_ids.append(y.slice_axis(axis=-1, begin=4, end=5))
            gt_bboxes.append(y.slice_axis(axis=-1, begin=0, end=4))
            gt_bboxes[-1] *= im_scale
433
434
435
436
437
            gt_difficults.append(
                y.slice_axis(axis=-1, begin=5, end=6)
                if y.shape[-1] > 5
                else None
            )
438
439

        # update metric
440
441
442
443
444
445
        for det_bbox, det_id, det_score, gt_bbox, gt_id, gt_diff in zip(
            det_bboxes, det_ids, det_scores, gt_bboxes, gt_ids, gt_difficults
        ):
            eval_metric.update(
                det_bbox, det_id, det_score, gt_bbox, gt_id, gt_diff
            )
446
447
448
    return eval_metric.get()


449
def get_lr_at_iter(alpha, lr_warmup_factor=1.0 / 3.0):
450
451
452
453
    return lr_warmup_factor * (1 - alpha) + alpha


class ForwardBackwardTask(Parallelizable):
454
455
456
457
458
459
460
461
462
463
    def __init__(
        self,
        net,
        optimizer,
        rpn_cls_loss,
        rpn_box_loss,
        rcnn_cls_loss,
        rcnn_box_loss,
        mix_ratio,
    ):
464
465
466
467
468
469
470
471
472
473
474
475
476
477
        super(ForwardBackwardTask, self).__init__()
        self.net = net
        self._optimizer = optimizer
        self.rpn_cls_loss = rpn_cls_loss
        self.rpn_box_loss = rpn_box_loss
        self.rcnn_cls_loss = rcnn_cls_loss
        self.rcnn_box_loss = rcnn_box_loss
        self.mix_ratio = mix_ratio

    def forward_backward(self, x):
        data, label, rpn_cls_targets, rpn_box_targets, rpn_box_masks = x
        with autograd.record():
            gt_label = label[:, :, 4:5]
            gt_box = label[:, :, :4]
478
479
480
481
482
483
484
485
486
487
488
489
490
491
            (
                cls_pred,
                box_pred,
                roi,
                samples,
                matches,
                rpn_score,
                rpn_box,
                anchors,
                cls_targets,
                box_targets,
                box_masks,
                _,
            ) = net(data, gt_box, gt_label)
492
493
494
            # losses of rpn
            rpn_score = rpn_score.squeeze(axis=-1)
            num_rpn_pos = (rpn_cls_targets >= 0).sum()
495
496
497
498
499
500
501
502
503
504
505
506
            rpn_loss1 = (
                self.rpn_cls_loss(
                    rpn_score, rpn_cls_targets, rpn_cls_targets >= 0
                )
                * rpn_cls_targets.size
                / num_rpn_pos
            )
            rpn_loss2 = (
                self.rpn_box_loss(rpn_box, rpn_box_targets, rpn_box_masks)
                * rpn_box.size
                / num_rpn_pos
            )
507
508
509
510
            # rpn overall loss, use sum rather than average
            rpn_loss = rpn_loss1 + rpn_loss2
            # losses of rcnn
            num_rcnn_pos = (cls_targets >= 0).sum()
511
512
513
514
515
516
517
518
519
520
521
522
            rcnn_loss1 = (
                self.rcnn_cls_loss(
                    cls_pred, cls_targets, cls_targets.expand_dims(-1) >= 0
                )
                * cls_targets.size
                / num_rcnn_pos
            )
            rcnn_loss2 = (
                self.rcnn_box_loss(box_pred, box_targets, box_masks)
                * box_pred.size
                / num_rcnn_pos
            )
523
524
            rcnn_loss = rcnn_loss1 + rcnn_loss2
            # overall losses
525
526
527
528
            total_loss = (
                rpn_loss.sum() * self.mix_ratio
                + rcnn_loss.sum() * self.mix_ratio
            )
529
530
531
532
533

            rpn_loss1_metric = rpn_loss1.mean() * self.mix_ratio
            rpn_loss2_metric = rpn_loss2.mean() * self.mix_ratio
            rcnn_loss1_metric = rcnn_loss1.mean() * self.mix_ratio
            rcnn_loss2_metric = rcnn_loss2.mean() * self.mix_ratio
534
535
536
537
            rpn_acc_metric = [
                [rpn_cls_targets, rpn_cls_targets >= 0],
                [rpn_score],
            ]
538
539
540
541
542
            rpn_l1_loss_metric = [[rpn_box_targets, rpn_box_masks], [rpn_box]]
            rcnn_acc_metric = [[cls_targets], [cls_pred]]
            rcnn_l1_loss_metric = [[box_targets, box_masks], [box_pred]]

            if args.amp:
543
544
545
                with amp.scale_loss(
                    total_loss, self._optimizer
                ) as scaled_losses:
546
547
548
549
                    autograd.backward(scaled_losses)
            else:
                total_loss.backward()

550
551
552
553
554
555
556
557
558
559
        return (
            rpn_loss1_metric,
            rpn_loss2_metric,
            rcnn_loss1_metric,
            rcnn_loss2_metric,
            rpn_acc_metric,
            rpn_l1_loss_metric,
            rcnn_acc_metric,
            rcnn_l1_loss_metric,
        )
560
561
562
563


def train(net, train_data, val_data, eval_metric, batch_size, ctx, args):
    """Training pipeline"""
564
565
566
    args.kv_store = (
        "device" if (args.amp and "nccl" in args.kv_store) else args.kv_store
    )
567
    kv = mx.kvstore.create(args.kv_store)
568
569
570
571
572
573
574
    net.collect_params().setattr("grad_req", "null")
    net.collect_train_params().setattr("grad_req", "write")
    optimizer_params = {
        "learning_rate": args.lr,
        "wd": args.wd,
        "momentum": args.momentum,
    }
575
576
577
578
    if args.horovod:
        hvd.broadcast_parameters(net.collect_params(), root_rank=0)
        trainer = hvd.DistributedTrainer(
            net.collect_train_params(),  # fix batchnorm, fix first stage, etc...
579
580
581
            "sgd",
            optimizer_params,
        )
582
583
584
    else:
        trainer = gluon.Trainer(
            net.collect_train_params(),  # fix batchnorm, fix first stage, etc...
585
            "sgd",
586
            optimizer_params,
587
588
589
            update_on_kvstore=(False if args.amp else None),
            kvstore=kv,
        )
590
591
592
593
594
595

    if args.amp:
        amp.init_trainer(trainer)

    # lr decay policy
    lr_decay = float(args.lr_decay)
596
597
598
    lr_steps = sorted(
        [float(ls) for ls in args.lr_decay_epoch.split(",") if ls.strip()]
    )
599
600
601
    lr_warmup = float(args.lr_warmup)  # avoid int division

    # TODO(zhreshold) losses?
602
603
604
605
    rpn_cls_loss = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss(
        from_sigmoid=False
    )
    rpn_box_loss = mx.gluon.loss.HuberLoss(rho=1 / 9.0)  # == smoothl1
606
607
    rcnn_cls_loss = mx.gluon.loss.SoftmaxCrossEntropyLoss()
    rcnn_box_loss = mx.gluon.loss.HuberLoss()  # == smoothl1
608
609
610
611
612
613
    metrics = [
        mx.metric.Loss("RPN_Conf"),
        mx.metric.Loss("RPN_SmoothL1"),
        mx.metric.Loss("RCNN_CrossEntropy"),
        mx.metric.Loss("RCNN_SmoothL1"),
    ]
614
615
616
617
618

    rpn_acc_metric = RPNAccMetric()
    rpn_bbox_metric = RPNL1LossMetric()
    rcnn_acc_metric = RCNNAccMetric()
    rcnn_bbox_metric = RCNNL1LossMetric()
619
620
621
622
623
624
    metrics2 = [
        rpn_acc_metric,
        rpn_bbox_metric,
        rcnn_acc_metric,
        rcnn_bbox_metric,
    ]
625
626
627
628
629

    # set up logger
    logging.basicConfig()
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)
630
    log_file_path = args.save_prefix + "_train.log"
631
632
633
634
635
636
637
    log_dir = os.path.dirname(log_file_path)
    if log_dir and not os.path.exists(log_dir):
        os.makedirs(log_dir)
    fh = logging.FileHandler(log_file_path)
    logger.addHandler(fh)
    logger.info(args)
    if args.verbose:
638
        logger.info("Trainable parameters:")
639
        logger.info(net.collect_train_params().keys())
640
    logger.info("Start training from [Epoch {}]".format(args.start_epoch))
641
642
643
644
645
    best_map = [0]
    for epoch in range(args.start_epoch, args.epochs):
        mix_ratio = 1.0
        if not args.disable_hybridization:
            net.hybridize(static_alloc=args.static_alloc)
646
647
648
649
650
651
652
653
654
655
656
657
658
659
        rcnn_task = ForwardBackwardTask(
            net,
            trainer,
            rpn_cls_loss,
            rpn_box_loss,
            rcnn_cls_loss,
            rcnn_box_loss,
            mix_ratio=1.0,
        )
        executor = (
            Parallel(args.executor_threads, rcnn_task)
            if not args.horovod
            else None
        )
660
661
662
663
664
665
666
667
668
669
670
        if args.mixup:
            # TODO(zhreshold) only support evenly mixup now, target generator needs to be modified otherwise
            train_data._dataset._data.set_mixup(np.random.uniform, 0.5, 0.5)
            mix_ratio = 0.5
            if epoch >= args.epochs - args.no_mixup_epochs:
                train_data._dataset._data.set_mixup(None)
                mix_ratio = 1.0
        while lr_steps and epoch >= lr_steps[0]:
            new_lr = trainer.learning_rate * lr_decay
            lr_steps.pop(0)
            trainer.set_learning_rate(new_lr)
671
672
673
            logger.info(
                "[Epoch {}] Set learning rate to {}".format(epoch, new_lr)
            )
674
675
676
677
678
679
        for metric in metrics:
            metric.reset()
        tic = time.time()
        btic = time.time()
        base_lr = trainer.learning_rate
        rcnn_task.mix_ratio = mix_ratio
680
        logger.info("Total Num of Batches: %d" % (len(train_data)))
681
682
683
        for i, batch in enumerate(train_data):
            if epoch == 0 and i <= lr_warmup:
                # adjust based on real percentage
684
685
686
                new_lr = base_lr * get_lr_at_iter(
                    i / lr_warmup, args.lr_warmup_factor
                )
687
688
689
                if new_lr != trainer.learning_rate:
                    if i % args.log_interval == 0:
                        logger.info(
690
691
692
693
                            "[Epoch 0 Iteration {}] Set learning rate to {}".format(
                                i, new_lr
                            )
                        )
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
                    trainer.set_learning_rate(new_lr)
            batch = split_and_load(batch, ctx_list=ctx)
            metric_losses = [[] for _ in metrics]
            add_losses = [[] for _ in metrics2]
            if executor is not None:
                for data in zip(*batch):
                    executor.put(data)
            for j in range(len(ctx)):
                if executor is not None:
                    result = executor.get()
                else:
                    result = rcnn_task.forward_backward(list(zip(*batch))[0])
                if (not args.horovod) or hvd.rank() == 0:
                    for k in range(len(metric_losses)):
                        metric_losses[k].append(result[k])
                    for k in range(len(add_losses)):
                        add_losses[k].append(result[len(metric_losses) + k])
            for metric, record in zip(metrics, metric_losses):
                metric.update(0, record)
            for metric, records in zip(metrics2, add_losses):
                for pred in records:
                    metric.update(pred[0], pred[1])
            trainer.step(batch_size)

            # update metrics
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
            if (
                (not args.horovod or hvd.rank() == 0)
                and args.log_interval
                and not (i + 1) % args.log_interval
            ):
                msg = ",".join(
                    [
                        "{}={:.3f}".format(*metric.get())
                        for metric in metrics + metrics2
                    ]
                )
                logger.info(
                    "[Epoch {}][Batch {}], Speed: {:.3f} samples/sec, {}".format(
                        epoch,
                        i,
                        args.log_interval
                        * args.batch_size
                        / (time.time() - btic),
                        msg,
                    )
                )
740
741
742
                btic = time.time()

        if (not args.horovod) or hvd.rank() == 0:
743
744
745
746
747
748
749
750
            msg = ",".join(
                ["{}={:.3f}".format(*metric.get()) for metric in metrics]
            )
            logger.info(
                "[Epoch {}] Training cost: {:.3f}, {}".format(
                    epoch, (time.time() - tic), msg
                )
            )
751
752
753
            if not (epoch + 1) % args.val_interval:
                # consider reduce the frequency of validation to save time
                if val_data is not None:
754
755
756
757
758
759
760
761
762
763
764
765
                    map_name, mean_ap = validate(
                        net, val_data, ctx, eval_metric, args
                    )
                    val_msg = "\n".join(
                        [
                            "{}={}".format(k, v)
                            for k, v in zip(map_name, mean_ap)
                        ]
                    )
                    logger.info(
                        "[Epoch {}] Validation: \n{}".format(epoch, val_msg)
                    )
766
767
768
769
                    current_map = float(mean_ap[-1])
                else:
                    current_map = 0
            else:
770
771
772
773
774
775
776
777
778
779
780
781
782
                current_map = 0.0
            save_params(
                net,
                logger,
                best_map,
                current_map,
                epoch,
                args.save_interval,
                args.save_prefix,
            )


if __name__ == "__main__":
783
784
785
786
787
788
789
790
791
792
793
794
795
796
    import sys

    sys.setrecursionlimit(1100)
    args = parse_args()
    # fix seed for mxnet, numpy and python builtin random generator.
    gutils.random.seed(args.seed)

    if args.amp:
        amp.init()

    # training contexts
    if args.horovod:
        ctx = [mx.gpu(hvd.local_rank())]
    else:
797
        ctx = [mx.gpu(int(i)) for i in args.gpus.split(",") if i.strip()]
798
799
800
801
802
803
        ctx = ctx if ctx else [mx.cpu()]

    # network
    kwargs = {}
    module_list = []
    if args.use_fpn:
804
        module_list.append("fpn")
805
806
    if args.norm_layer is not None:
        module_list.append(args.norm_layer)
807
808
        if args.norm_layer == "bn":
            kwargs["num_devices"] = len(args.gpus.split(","))
809

810
    net_name = "_".join(("faster_rcnn", *module_list, args.network, "custom"))
811
812
813
    args.save_prefix += net_name
    gutils.makedirs(args.save_prefix)
    train_dataset, val_dataset, eval_metric = get_dataset(args.dataset, args)
814
815
816
817
818
819
820
821
    net = faster_rcnn_resnet101_v1d_custom(
        classes=train_dataset.classes,
        transfer="coco",
        pretrained_base=False,
        additional_output=False,
        per_device_batch_size=args.batch_size // len(ctx),
        **kwargs
    )
822
823
824
825
826
827
828
829
830
831
    if args.resume.strip():
        net.load_parameters(args.resume.strip())
    else:
        for param in net.collect_params().values():
            if param._data is not None:
                continue
            param.initialize()
    net.collect_params().reset_ctx(ctx)

    # training data
832
833
834
    batch_size = (
        args.batch_size // len(ctx) if args.horovod else args.batch_size
    )
835
    train_data, val_data = get_dataloader(
836
837
838
839
840
841
842
843
844
        net,
        train_dataset,
        val_dataset,
        FasterRCNNDefaultTrainTransform,
        FasterRCNNDefaultValTransform,
        batch_size,
        len(ctx),
        args,
    )
845
846
847

    # training
    train(net, train_data, val_data, eval_metric, batch_size, ctx, args)