train_dist_unsupervised.py 19.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import os
os.environ['DGLBACKEND']='pytorch'
from multiprocessing import Process
import argparse, time, math
import numpy as np
from functools import wraps
import tqdm
import sklearn.linear_model as lm
import sklearn.metrics as skm

import dgl
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
from dgl.data.utils import load_graphs
import dgl.function as fn
import dgl.nn.pytorch as dglnn

import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing as mp
from torch.utils.data import DataLoader
#from pyinstrument import Profiler
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

class SAGE(nn.Module):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super().__init__()
        self.n_layers = n_layers
        self.n_hidden = n_hidden
        self.n_classes = n_classes
        self.layers = nn.ModuleList()
        self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, 'mean'))
        for i in range(1, n_layers - 1):
            self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, 'mean'))
        self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, 'mean'))
        self.dropout = nn.Dropout(dropout)
        self.activation = activation

    def forward(self, blocks, x):
        h = x
        for l, (layer, block) in enumerate(zip(self.layers, blocks)):
            h = layer(block, h)
            if l != len(self.layers) - 1:
                h = self.activation(h)
                h = self.dropout(h)
        return h

    def inference(self, g, x, batch_size, device):
        """
        Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
        g : the entire graph.
        x : the input of entire node set.

        The inference code is written in a fashion that it could handle any number of nodes and
        layers.
        """
        # During inference with sampling, multi-layer blocks are very inefficient because
        # lots of computations in the first few layers are repeated.
        # Therefore, we compute the representation of all nodes layer by layer.  The nodes
        # on each layer are of course splitted in batches.
        # TODO: can we standardize this?
        for l, layer in enumerate(self.layers):
            y = th.zeros(g.number_of_nodes(), self.n_hidden if l != len(self.layers) - 1 else self.n_classes)

            sampler = dgl.sampling.MultiLayerNeighborSampler([None])
            dataloader = dgl.sampling.NodeDataLoader(
                g,
                th.arange(g.number_of_nodes()),
                sampler,
                batch_size=args.batch_size,
                shuffle=True,
                drop_last=False,
                num_workers=args.num_workers)

            for input_nodes, output_nodes, blocks in tqdm.tqdm(dataloader):
                block = blocks[0]

                block = block.int().to(device)
                h = x[input_nodes].to(device)
                h = layer(block, h)
                if l != len(self.layers) - 1:
                    h = self.activation(h)
                    h = self.dropout(h)

                y[output_nodes] = h.cpu()

            x = y
        return y

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

class NegativeSampler(object):
    def __init__(self, g, neg_nseeds):
        self.neg_nseeds = neg_nseeds

    def __call__(self, num_samples):
        # select local neg nodes as seeds
        return self.neg_nseeds[th.randint(self.neg_nseeds.shape[0], (num_samples,))]

class NeighborSampler(object):
    def __init__(self, g, fanouts, neg_nseeds, sample_neighbors, num_negs, remove_edge):
        self.g = g
        self.fanouts = fanouts
        self.sample_neighbors = sample_neighbors
        self.neg_sampler = NegativeSampler(g, neg_nseeds)
        self.num_negs = num_negs
        self.remove_edge = remove_edge

    def sample_blocks(self, seed_edges):
        n_edges = len(seed_edges)
        seed_edges = th.LongTensor(np.asarray(seed_edges))
        heads, tails = self.g.find_edges(seed_edges)

        neg_tails = self.neg_sampler(self.num_negs * n_edges)
        neg_heads = heads.view(-1, 1).expand(n_edges, self.num_negs).flatten()

        # Maintain the correspondence between heads, tails and negative tails as two
        # graphs.
        # pos_graph contains the correspondence between each head and its positive tail.
        # neg_graph contains the correspondence between each head and its negative tails.
        # Both pos_graph and neg_graph are first constructed with the same node space as
        # the original graph.  Then they are compacted together with dgl.compact_graphs.
        pos_graph = dgl.graph((heads, tails), num_nodes=self.g.number_of_nodes())
        neg_graph = dgl.graph((neg_heads, neg_tails), num_nodes=self.g.number_of_nodes())
        pos_graph, neg_graph = dgl.compact_graphs([pos_graph, neg_graph])

        seeds = pos_graph.ndata[dgl.NID]
        blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
            frontier = self.sample_neighbors(self.g, seeds, fanout, replace=True)
            if self.remove_edge:
                # Remove all edges between heads and tails, as well as heads and neg_tails.
                _, _, edge_ids = frontier.edge_ids(
                    th.cat([heads, tails, neg_heads, neg_tails]),
                    th.cat([tails, heads, neg_tails, neg_heads]),
                    return_uv=True)
                frontier = dgl.remove_edges(frontier, edge_ids)
            # Then we compact the frontier into a bipartite graph for message passing.
            block = dgl.to_block(frontier, seeds)

            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]

            blocks.insert(0, block)

        # Pre-generate CSR format that it can be used in training directly
        return pos_graph, neg_graph, blocks

class PosNeighborSampler(object):
    def __init__(self, g, fanouts, sample_neighbors):
        self.g = g
        self.fanouts = fanouts
        self.sample_neighbors = sample_neighbors

    def sample_blocks(self, seeds):
        seeds = th.LongTensor(np.asarray(seeds))
        blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
            frontier = self.sample_neighbors(self.g, seeds, fanout, replace=True)
            # Then we compact the frontier into a bipartite graph for message passing.
            block = dgl.to_block(frontier, seeds)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]

            blocks.insert(0, block)
        return blocks

class DistSAGE(SAGE):
    def __init__(self, in_feats, n_hidden, n_classes, n_layers,
                 activation, dropout):
        super(DistSAGE, self).__init__(in_feats, n_hidden, n_classes, n_layers,
                                       activation, dropout)

    def inference(self, g, x, batch_size, device):
        """
        Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
        g : the entire graph.
        x : the input of entire node set.

        The inference code is written in a fashion that it could handle any number of nodes and
        layers.
        """
        # During inference with sampling, multi-layer blocks are very inefficient because
        # lots of computations in the first few layers are repeated.
        # Therefore, we compute the representation of all nodes layer by layer.  The nodes
        # on each layer are of course splitted in batches.
        # TODO: can we standardize this?
        nodes = dgl.distributed.node_split(np.arange(g.number_of_nodes()),
                                           g.get_partition_book(), force_even=True)
        y = dgl.distributed.DistTensor(g, (g.number_of_nodes(), self.n_hidden), th.float32, 'h',
                                       persistent=True)
        for l, layer in enumerate(self.layers):
            if l == len(self.layers) - 1:
                y = dgl.distributed.DistTensor(g, (g.number_of_nodes(), self.n_classes),
                                               th.float32, 'h_last', persistent=True)

            sampler = PosNeighborSampler(g, [-1], dgl.distributed.sample_neighbors)
            print('|V|={}, eval batch size: {}'.format(g.number_of_nodes(), batch_size))
            # Create PyTorch DataLoader for constructing blocks
            dataloader = DataLoader(
                dataset=nodes,
                batch_size=batch_size,
                collate_fn=sampler.sample_blocks,
                shuffle=False,
                drop_last=False,
                num_workers=args.num_workers)

            for blocks in tqdm.tqdm(dataloader):
                block = blocks[0]
                input_nodes = block.srcdata[dgl.NID]
                output_nodes = block.dstdata[dgl.NID]
                h = x[input_nodes].to(device)
                h_dst = h[:block.number_of_dst_nodes()]
                h = layer(block, (h, h_dst))
                if l != len(self.layers) - 1:
                    h = self.activation(h)
                    h = self.dropout(h)

                y[output_nodes] = h.cpu()

            x = y
            g.barrier()
        return y

def load_subtensor(g, input_nodes, device):
    """
    Copys features and labels of a set of nodes onto GPU.
    """
    batch_inputs = g.ndata['features'][input_nodes].to(device)
    return batch_inputs

class CrossEntropyLoss(nn.Module):
    def forward(self, block_outputs, pos_graph, neg_graph):
        with pos_graph.local_scope():
            pos_graph.ndata['h'] = block_outputs
            pos_graph.apply_edges(fn.u_dot_v('h', 'h', 'score'))
            pos_score = pos_graph.edata['score']
        with neg_graph.local_scope():
            neg_graph.ndata['h'] = block_outputs
            neg_graph.apply_edges(fn.u_dot_v('h', 'h', 'score'))
            neg_score = neg_graph.edata['score']

        score = th.cat([pos_score, neg_score])
        label = th.cat([th.ones_like(pos_score), th.zeros_like(neg_score)]).long()
        loss = F.binary_cross_entropy_with_logits(score, label.float())
        return loss

def generate_emb(model, g, inputs, batch_size, device):
    """
    Generate embeddings for each node
    g : The entire graph.
    inputs : The features of all the nodes.
    batch_size : Number of nodes to compute at the same time.
    device : The GPU device to evaluate on.
    """
    model.eval()
    with th.no_grad():
        pred = model.inference(g, inputs, batch_size, device)

    return pred

def compute_acc(emb, labels, train_nids, val_nids, test_nids):
    """
    Compute the accuracy of prediction given the labels.
    
    We will fist train a LogisticRegression model using the trained embeddings,
    the training set, validation set and test set is provided as the arguments.

    The final result is predicted by the lr model.

    emb: The pretrained embeddings
    labels: The ground truth
    train_nids: The training set node ids
    val_nids: The validation set node ids
    test_nids: The test set node ids
    """

    emb = emb[np.arange(labels.shape[0])].cpu().numpy()
    train_nids = train_nids.cpu().numpy()
    val_nids = val_nids.cpu().numpy()
    test_nids = test_nids.cpu().numpy()
    labels = labels.cpu().numpy()

    emb = (emb - emb.mean(0, keepdims=True)) / emb.std(0, keepdims=True)
    lr = lm.LogisticRegression(multi_class='multinomial', max_iter=10000)
    lr.fit(emb[train_nids], labels[train_nids])

    pred = lr.predict(emb)
    eval_acc = skm.accuracy_score(labels[val_nids], pred[val_nids])
    test_acc = skm.accuracy_score(labels[test_nids], pred[test_nids])
    return eval_acc, test_acc

def run(args, device, data):
    # Unpack data
    train_eids, train_nids, in_feats, g, global_train_nid, global_valid_nid, global_test_nid, labels = data
    # Create sampler
    sampler = NeighborSampler(g, [int(fanout) for fanout in args.fan_out.split(',')], train_nids,
                              dgl.distributed.sample_neighbors, args.num_negs, args.remove_edge)

    # Create PyTorch DataLoader for constructing blocks
    dataloader = DataLoader(
        dataset=train_eids.numpy(),
        batch_size=args.batch_size,
        collate_fn=sampler.sample_blocks,
        shuffle=True,
        drop_last=False,
        num_workers=args.num_workers)

    # Define model and optimizer
    model = DistSAGE(in_feats, args.num_hidden, args.num_hidden, args.num_layers, F.relu, args.dropout)
    model = model.to(device)
    if not args.standalone:
        model = th.nn.parallel.DistributedDataParallel(model)
    loss_fcn = CrossEntropyLoss()
    loss_fcn = loss_fcn.to(device)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    # Training loop
    #profiler = Profiler()
    #profiler.start()
    epoch = 0
    for epoch in range(args.num_epochs):
        sample_time = 0
        copy_time = 0
        forward_time = 0
        backward_time = 0
        update_time = 0
        num_seeds = 0
        num_inputs = 0

        step_time = []
        iter_t = []
        sample_t = []
        feat_copy_t = []
        forward_t = []
        backward_t = []
        update_t = []
        iter_tput = []

        start = time.time()
        # Loop over the dataloader to sample the computation dependency graph as a list of
        # blocks.
        for step, (pos_graph, neg_graph, blocks) in enumerate(dataloader):
            tic_step = time.time()
            sample_t.append(tic_step - start)

            # The nodes for input lies at the LHS side of the first block.
            # The nodes for output lies at the RHS side of the last block.
            input_nodes = blocks[0].srcdata[dgl.NID]

            # Load the input features as well as output labels
            batch_inputs = load_subtensor(g, input_nodes, device)
            copy_time = time.time()
            feat_copy_t.append(copy_time - tic_step)

            # Compute loss and prediction
            batch_pred = model(blocks, batch_inputs)
            loss = loss_fcn(batch_pred, pos_graph, neg_graph)
            forward_end = time.time()
            optimizer.zero_grad()
            loss.backward()
            compute_end = time.time()
            forward_t.append(forward_end - copy_time)
            backward_t.append(compute_end - forward_end)

            # Aggregate gradients in multiple nodes.
            optimizer.step()
            update_t.append(time.time() - compute_end)

            pos_edges = pos_graph.number_of_edges()
            neg_edges = neg_graph.number_of_edges()

            step_t = time.time() - start
            step_time.append(step_t)
            iter_tput.append(pos_edges / step_t)
            num_seeds += pos_edges
            if step % args.log_every == 0:
                print('[{}] Epoch {:05d} | Step {:05d} | Loss {:.4f} | Speed (samples/sec) {:.4f} | time {:.3f} s' \
                        '| sample {:.3f} | copy {:.3f} | forward {:.3f} | backward {:.3f} | update {:.3f}'.format(
                    g.rank(), epoch, step, loss.item(), np.mean(iter_tput[3:]), np.sum(step_time[-args.log_every:]),
                    np.sum(sample_t[-args.log_every:]), np.sum(feat_copy_t[-args.log_every:]), np.sum(forward_t[-args.log_every:]),
                    np.sum(backward_t[-args.log_every:]), np.sum(update_t[-args.log_every:])))
            start = time.time()

        print('[{}]Epoch Time(s): {:.4f}, sample: {:.4f}, data copy: {:.4f}, forward: {:.4f}, backward: {:.4f}, update: {:.4f}, #seeds: {}, #inputs: {}'.format(
            g.rank(), np.sum(step_time), np.sum(sample_t), np.sum(feat_copy_t), np.sum(forward_t), np.sum(backward_t), np.sum(update_t), num_seeds, num_inputs))
        epoch += 1

    # evaluate the embedding using LogisticRegression
    if args.standalone:
        pred = generate_emb(model,g, g.ndata['features'], args.batch_size_eval, device)
    else:
        pred = generate_emb(model.module, g, g.ndata['features'], args.batch_size_eval, device)
    if g.rank() == 0:
        eval_acc, test_acc = compute_acc(pred, labels, global_train_nid, global_valid_nid, global_test_nid)
        print('eval acc {:.4f}; test acc {:.4f}'.format(eval_acc, test_acc))

    # sync for eval and test
    if not args.standalone:
        th.distributed.barrier()

    if not args.standalone:
        g._client.barrier()

        # save features into file
        if g.rank() == 0:
            th.save(pred, 'emb.pt')
    else:
        feat = g.ndata['features']
        th.save(pred, 'emb.pt')

def main(args):
421
    dgl.distributed.initialize(args.ip_config, args.num_servers, num_workers=args.num_workers)
422
423
    if not args.standalone:
        th.distributed.init_process_group(backend='gloo')
424
    g = dgl.distributed.DistGraph(args.ip_config, args.graph_name, part_config=args.part_config)
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    print('rank:', g.rank())
    print('number of edges', g.number_of_edges())

    train_eids = dgl.distributed.edge_split(th.ones((g.number_of_edges(),), dtype=th.bool), g.get_partition_book(), force_even=True)
    train_nids = dgl.distributed.node_split(th.ones((g.number_of_nodes(),), dtype=th.bool), g.get_partition_book())
    global_train_nid = th.LongTensor(np.nonzero(g.ndata['train_mask'][np.arange(g.number_of_nodes())]))
    global_valid_nid = th.LongTensor(np.nonzero(g.ndata['val_mask'][np.arange(g.number_of_nodes())]))
    global_test_nid = th.LongTensor(np.nonzero(g.ndata['test_mask'][np.arange(g.number_of_nodes())]))
    labels = g.ndata['labels'][np.arange(g.number_of_nodes())]
    device = th.device('cpu')

    # Pack data
    in_feats = g.ndata['features'].shape[1]
    global_train_nid = global_train_nid.squeeze()
    global_valid_nid = global_valid_nid.squeeze()
    global_test_nid = global_test_nid.squeeze()
    print("number of train {}".format(global_train_nid.shape[0]))
    print("number of valid {}".format(global_valid_nid.shape[0]))
    print("number of test {}".format(global_test_nid.shape[0]))
    data = train_eids, train_nids, in_feats, g, global_train_nid, global_valid_nid, global_test_nid, labels
    run(args, device, data)
    print("parent ends")

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
    register_data_args(parser)
    parser.add_argument('--graph-name', type=str, help='graph name')
    parser.add_argument('--id', type=int, help='the partition id')
    parser.add_argument('--ip_config', type=str, help='The file for IP configuration')
454
    parser.add_argument('--part_config', type=str, help='The path to the partition config file')
455
    parser.add_argument('--num-servers', type=int, default=1, help='Server count on each machine.')
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
    parser.add_argument('--n-classes', type=int, help='the number of classes')
    parser.add_argument('--gpu', type=int, default=0,
        help="GPU device ID. Use -1 for CPU training")
    parser.add_argument('--num-epochs', type=int, default=20)
    parser.add_argument('--num-hidden', type=int, default=16)
    parser.add_argument('--num-layers', type=int, default=2)
    parser.add_argument('--fan-out', type=str, default='10,25')
    parser.add_argument('--batch-size', type=int, default=1000)
    parser.add_argument('--batch-size-eval', type=int, default=100000)
    parser.add_argument('--log-every', type=int, default=20)
    parser.add_argument('--eval-every', type=int, default=5)
    parser.add_argument('--lr', type=float, default=0.003)
    parser.add_argument('--dropout', type=float, default=0.5)
    parser.add_argument('--num-workers', type=int, default=0,
        help="Number of sampling processes. Use 0 for no extra process.")
    parser.add_argument('--local_rank', type=int, help='get rank of the process')
    parser.add_argument('--standalone', action='store_true', help='run in the standalone mode')
    parser.add_argument('--num-negs', type=int, default=1)
    parser.add_argument('--neg-share', default=False, action='store_true',
        help="sharing neg nodes for positive nodes")
    parser.add_argument('--remove-edge', default=False, action='store_true',
        help="whether to remove edges during sampling")
    args = parser.parse_args()

    print(args)
    main(args)