test_internal.py 7.39 KB
Newer Older
1
import os
2
import re
3
4
import tempfile

5
import dgl.graphbolt.internal as internal
6
import numpy as np
7
import pandas as pd
8
9
10
11
12
13
14
15
16
import pytest
import torch


def test_read_torch_data():
    with tempfile.TemporaryDirectory() as test_dir:
        save_tensor = torch.tensor([[1, 2, 4], [2, 5, 3]])
        file_name = os.path.join(test_dir, "save_tensor.pt")
        torch.save(save_tensor, file_name)
17
        read_tensor = internal.utils._read_torch_data(file_name)
18
19
20
21
22
23
24
25
26
27
        assert torch.equal(save_tensor, read_tensor)
        save_tensor = read_tensor = None


@pytest.mark.parametrize("in_memory", [True, False])
def test_read_numpy_data(in_memory):
    with tempfile.TemporaryDirectory() as test_dir:
        save_numpy = np.array([[1, 2, 4], [2, 5, 3]])
        file_name = os.path.join(test_dir, "save_numpy.npy")
        np.save(file_name, save_numpy)
28
        read_tensor = internal.utils._read_numpy_data(file_name, in_memory)
29
30
31
32
33
34
35
36
37
38
39
40
41
42
        assert torch.equal(torch.from_numpy(save_numpy), read_tensor)
        save_numpy = read_tensor = None


@pytest.mark.parametrize("fmt", ["torch", "numpy"])
def test_read_data(fmt):
    with tempfile.TemporaryDirectory() as test_dir:
        data = np.array([[1, 2, 4], [2, 5, 3]])
        type_name = "pt" if fmt == "torch" else "npy"
        file_name = os.path.join(test_dir, f"save_data.{type_name}")
        if fmt == "numpy":
            np.save(file_name, data)
        elif fmt == "torch":
            torch.save(torch.from_numpy(data), file_name)
43
        read_tensor = internal.read_data(file_name, fmt)
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
        assert torch.equal(torch.from_numpy(data), read_tensor)


@pytest.mark.parametrize(
    "data_fmt, save_fmt, contiguous",
    [
        ("torch", "torch", True),
        ("torch", "torch", False),
        ("torch", "numpy", True),
        ("torch", "numpy", False),
        ("numpy", "torch", True),
        ("numpy", "torch", False),
        ("numpy", "numpy", True),
        ("numpy", "numpy", False),
    ],
)
def test_save_data(data_fmt, save_fmt, contiguous):
    with tempfile.TemporaryDirectory() as test_dir:
        data = np.array([[1, 2, 4], [2, 5, 3]])
        if not contiguous:
            data = np.asfortranarray(data)
        tensor_data = torch.from_numpy(data)
        type_name = "pt" if save_fmt == "torch" else "npy"
        save_file_name = os.path.join(test_dir, f"save_data.{type_name}")
        # Step1. Save the data.
        if data_fmt == "torch":
70
            internal.save_data(tensor_data, save_file_name, save_fmt)
71
        elif data_fmt == "numpy":
72
            internal.save_data(data, save_file_name, save_fmt)
73
74
75
76
77
78
79
80
81
82
83
84
85

        # Step2. Load the data.
        if save_fmt == "torch":
            loaded_data = torch.load(save_file_name)
            assert loaded_data.is_contiguous()
            assert torch.equal(tensor_data, loaded_data)
        elif save_fmt == "numpy":
            loaded_data = np.load(save_file_name)
            # Checks if the loaded data is C-contiguous.
            assert loaded_data.flags["C_CONTIGUOUS"]
            assert np.array_equal(tensor_data.numpy(), loaded_data)

        data = tensor_data = loaded_data = None
86
87
88
89
90
91
92
93
94
95


@pytest.mark.parametrize("fmt", ["torch", "numpy"])
def test_get_npy_dim(fmt):
    with tempfile.TemporaryDirectory() as test_dir:
        data = np.array([[1, 2, 4], [2, 5, 3]])
        type_name = "pt" if fmt == "torch" else "npy"
        file_name = os.path.join(test_dir, f"save_data.{type_name}")
        if fmt == "numpy":
            np.save(file_name, data)
96
            assert internal.get_npy_dim(file_name) == 2
97
98
99
        elif fmt == "torch":
            torch.save(torch.from_numpy(data), file_name)
            with pytest.raises(ValueError):
100
                internal.get_npy_dim(file_name)
101
        data = None
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120


@pytest.mark.parametrize("data_fmt", ["numpy", "torch"])
@pytest.mark.parametrize("save_fmt", ["numpy", "torch"])
@pytest.mark.parametrize("is_feature", [True, False])
def test_copy_or_convert_data(data_fmt, save_fmt, is_feature):
    with tempfile.TemporaryDirectory() as test_dir:
        data = np.arange(10)
        tensor_data = torch.from_numpy(data)
        in_type_name = "npy" if data_fmt == "numpy" else "pt"
        input_path = os.path.join(test_dir, f"data.{in_type_name}")
        out_type_name = "npy" if save_fmt == "numpy" else "pt"
        output_path = os.path.join(test_dir, f"out_data.{out_type_name}")
        if data_fmt == "numpy":
            np.save(input_path, data)
        else:
            torch.save(tensor_data, input_path)
        if save_fmt == "torch":
            with pytest.raises(AssertionError):
121
                internal.copy_or_convert_data(
122
123
124
125
126
127
128
                    input_path,
                    output_path,
                    data_fmt,
                    save_fmt,
                    is_feature=is_feature,
                )
        else:
129
            internal.copy_or_convert_data(
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
                input_path,
                output_path,
                data_fmt,
                save_fmt,
                is_feature=is_feature,
            )
        if is_feature:
            data = data.reshape(-1, 1)
            tensor_data = tensor_data.reshape(-1, 1)
        if save_fmt == "numpy":
            out_data = np.load(output_path)
            assert (data == out_data).all()

        data = None
        tensor_data = None
        out_data = None
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202


@pytest.mark.parametrize("edge_fmt", ["csv", "numpy"])
def test_read_edges(edge_fmt):
    with tempfile.TemporaryDirectory() as test_dir:
        num_nodes = 40
        num_edges = 200
        nodes = np.repeat(np.arange(num_nodes), 5)
        neighbors = np.random.randint(0, num_nodes, size=(num_edges))
        edges = np.stack([nodes, neighbors], axis=1)
        os.makedirs(os.path.join(test_dir, "edges"), exist_ok=True)
        if edge_fmt == "csv":
            # Wrtie into edges/edge.csv
            edges = pd.DataFrame(edges, columns=["src", "dst"])
            edge_path = os.path.join("edges", "edge.csv")
            edges.to_csv(
                os.path.join(test_dir, edge_path),
                index=False,
                header=False,
            )
        else:
            # Wrtie into edges/edge.npy
            edges = edges.T
            edge_path = os.path.join("edges", "edge.npy")
            np.save(os.path.join(test_dir, edge_path), edges)
        src, dst = internal.read_edges(test_dir, edge_fmt, edge_path)
        assert src.all() == nodes.all()
        assert dst.all() == neighbors.all()


def test_read_edges_error():
    # 1. Unsupported file format.
    with pytest.raises(
        AssertionError,
        match="`numpy` or `csv` is expected when reading edges but got `fake-type`.",
    ):
        internal.read_edges("test_dir", "fake-type", "edge_path")

    # 2. Unexpected shape of numpy array
    with tempfile.TemporaryDirectory() as test_dir:
        num_nodes = 40
        num_edges = 200
        nodes = np.repeat(np.arange(num_nodes), 5)
        neighbors = np.random.randint(0, num_nodes, size=(num_edges))
        edges = np.stack([nodes, neighbors, nodes], axis=1)
        os.makedirs(os.path.join(test_dir, "edges"), exist_ok=True)
        # Wrtie into edges/edge.npy
        edges = edges.T
        edge_path = os.path.join("edges", "edge.npy")
        np.save(os.path.join(test_dir, edge_path), edges)
        with pytest.raises(
            AssertionError,
            match=re.escape(
                "The shape of edges should be (2, N), but got torch.Size([3, 200])."
            ),
        ):
            internal.read_edges(test_dir, "numpy", edge_path)