gnn.py 2.75 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import torch.nn as nn

from dgl.nn.pytorch import SumPooling, AvgPooling, MaxPooling, GlobalAttentionPooling, Set2Set

from conv import GNN_node, GNN_node_Virtualnode

class GNN(nn.Module):

    def __init__(self, num_tasks = 1, num_layers = 5, emb_dim = 300, gnn_type = 'gin',
                 virtual_node = True, residual = False, drop_ratio = 0, JK = "last",
                 graph_pooling = "sum"):
        '''
            num_tasks (int): number of labels to be predicted
            virtual_node (bool): whether to add virtual node or not
        '''
        super(GNN, self).__init__()

        self.num_layers = num_layers
        self.drop_ratio = drop_ratio
        self.JK = JK
        self.emb_dim = emb_dim
        self.num_tasks = num_tasks
        self.graph_pooling = graph_pooling

        if self.num_layers < 2:
            raise ValueError("Number of GNN layers must be greater than 1.")

        ### GNN to generate node embeddings
        if virtual_node:
            self.gnn_node = GNN_node_Virtualnode(num_layers, emb_dim, JK = JK,
                                                 drop_ratio = drop_ratio,
                                                 residual = residual,
                                                 gnn_type = gnn_type)
        else:
            self.gnn_node = GNN_node(num_layers, emb_dim, JK = JK, drop_ratio = drop_ratio,
                                     residual = residual, gnn_type = gnn_type)


        ### Pooling function to generate whole-graph embeddings
        if self.graph_pooling == "sum":
            self.pool = SumPooling()
        elif self.graph_pooling == "mean":
            self.pool = AvgPooling()
        elif self.graph_pooling == "max":
            self.pool = MaxPooling
        elif self.graph_pooling == "attention":
            self.pool = GlobalAttentionPooling(
                gate_nn = nn.Sequential(nn.Linear(emb_dim, 2*emb_dim),
                                        nn.BatchNorm1d(2*emb_dim),
                                        nn.ReLU(),
                                        nn.Linear(2*emb_dim, 1)))

        elif self.graph_pooling == "set2set":
            self.pool = Set2Set(emb_dim, n_iters = 2, n_layers = 2)
        else:
            raise ValueError("Invalid graph pooling type.")

        if graph_pooling == "set2set":
            self.graph_pred_linear = nn.Linear(2*self.emb_dim, self.num_tasks)
        else:
            self.graph_pred_linear = nn.Linear(self.emb_dim, self.num_tasks)

    def forward(self, g, x, edge_attr):
        h_node = self.gnn_node(g, x, edge_attr)

        h_graph = self.pool(g, h_node)
        output = self.graph_pred_linear(h_graph)

        if self.training:
            return output
        else:
            return torch.clamp(output, min=0, max=50)