multi_gpu_link_prediction.py 10.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import argparse
import os
import time

import dgl.function as fn

import dgl.nn as dglnn
import numpy as np
import sklearn.linear_model as lm
import sklearn.metrics as skm
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from dgl.data import AsNodePredDataset, RedditDataset
from dgl.dataloading import (
    as_edge_prediction_sampler,
    DataLoader,
    MultiLayerFullNeighborSampler,
    NeighborSampler,
)
from dgl.multiprocessing import shared_tensor
from ogb.nodeproppred import DglNodePropPredDataset
from torch.nn.parallel import DistributedDataParallel


class SAGE(nn.Module):
    def __init__(self, in_size, hid_size, out_size):
        super().__init__()
        self.layers = nn.ModuleList()
        # two-layer GraphSAGE-mean
        self.layers.append(dglnn.SAGEConv(in_size, hid_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hid_size, out_size, "mean"))
        self.dropout = nn.Dropout(0.5)
        self.hid_size = hid_size
        self.out_size = out_size

    def forward(self, blocks, x):
        h = x
        for l, (layer, block) in enumerate(zip(self.layers, blocks)):
            h = layer(block, h)
            if l != len(self.layers) - 1:
                h = F.relu(h)
                h = self.dropout(h)
        return h

    def inference(self, g, device, batch_size, use_uva):
        g.ndata["h"] = g.ndata["feat"]
        sampler = MultiLayerFullNeighborSampler(1, prefetch_node_feats=["h"])
        for l, layer in enumerate(self.layers):
            dataloader = DataLoader(
                g,
                torch.arange(g.num_nodes(), device=device),
                sampler,
                device=device,
                batch_size=batch_size,
                shuffle=False,
                drop_last=False,
                num_workers=0,
                use_ddp=True,
                use_uva=use_uva,
            )
            # in order to prevent running out of GPU memory, allocate a
            # shared output tensor 'y' in host memory
            y = shared_tensor(
                (
                    g.num_nodes(),
                    self.hid_size
                    if l != len(self.layers) - 1
                    else self.out_size,
                )
            )
            for input_nodes, output_nodes, blocks in (
                tqdm.tqdm(dataloader) if dist.get_rank() == 0 else dataloader
            ):
                x = blocks[0].srcdata["h"]
                h = layer(blocks[0], x)  # len(blocks) = 1
                if l != len(self.layers) - 1:
                    h = F.relu(h)
                    h = self.dropout(h)
                # non_blocking (with pinned memory) to accelerate data transfer
                y[output_nodes] = h.to(y.device, non_blocking=True)
            # make sure all GPUs are done writing to 'y'
            dist.barrier()
            g.ndata["h"] = y if use_uva else y.to(device)

        g.ndata.pop("h")
        return y


class NegativeSampler(object):
    def __init__(self, g, k, neg_share=False, device=None):
        if device is None:
            device = g.device
        self.weights = g.in_degrees().float().to(device) ** 0.75
        self.k = k
        self.neg_share = neg_share

    def __call__(self, g, eids):
        src, _ = g.find_edges(eids)
        n = len(src)
        if self.neg_share and n % self.k == 0:
            dst = self.weights.multinomial(n, replacement=True)
            dst = dst.view(-1, 1, self.k).expand(-1, self.k, -1).flatten()
        else:
            dst = self.weights.multinomial(n * self.k, replacement=True)
        src = src.repeat_interleave(self.k)
        return src, dst


class CrossEntropyLoss(nn.Module):
    def forward(self, block_outputs, pos_graph, neg_graph):
        with pos_graph.local_scope():
            pos_graph.ndata["h"] = block_outputs
            pos_graph.apply_edges(fn.u_dot_v("h", "h", "score"))
            pos_score = pos_graph.edata["score"]
        with neg_graph.local_scope():
            neg_graph.ndata["h"] = block_outputs
            neg_graph.apply_edges(fn.u_dot_v("h", "h", "score"))
            neg_score = neg_graph.edata["score"]

        score = torch.cat([pos_score, neg_score])
        label = torch.cat(
            [torch.ones_like(pos_score), torch.zeros_like(neg_score)]
        ).long()
        loss = F.binary_cross_entropy_with_logits(score, label.float())
        return loss


def compute_acc_unsupervised(emb, labels, train_nids, val_nids, test_nids):
    """
    Compute the accuracy of prediction given the labels.
    """
    emb = emb.cpu().numpy()
    labels = labels.cpu().numpy()
    train_nids = train_nids.cpu().numpy()
    train_labels = labels[train_nids]
    val_nids = val_nids.cpu().numpy()
    val_labels = labels[val_nids]
    test_nids = test_nids.cpu().numpy()
    test_labels = labels[test_nids]
    emb = (emb - emb.mean(0, keepdims=True)) / emb.std(0, keepdims=True)
    lr = lm.LogisticRegression(multi_class="multinomial", max_iter=10000)
    lr.fit(emb[train_nids], train_labels)
    pred = lr.predict(emb)
    f1_micro_eval = skm.f1_score(val_labels, pred[val_nids], average="micro")
    f1_micro_test = skm.f1_score(test_labels, pred[test_nids], average="micro")
    return f1_micro_eval, f1_micro_test


def evaluate(proc_id, model, g, device, use_uva):
    model.eval()
    batch_size = 10000
    with torch.no_grad():
        pred = model.module.inference(g, device, batch_size, use_uva)
    return pred


def train(
    proc_id, nprocs, device, g, train_idx, val_idx, test_idx, model, use_uva
):
    # Create PyTorch DataLoader for constructing blocks
    n_edges = g.num_edges()
    train_seeds = torch.arange(n_edges).to(device)
    labels = g.ndata["label"].to("cpu")

    sampler = NeighborSampler([10, 25], prefetch_node_feats=["feat"])
    sampler = as_edge_prediction_sampler(
        sampler,
        exclude="reverse_id",
        # For each edge with ID e in Reddit dataset, the reverse edge is e ± |E|/2.
        reverse_eids=torch.cat(
            [torch.arange(n_edges // 2, n_edges), torch.arange(0, n_edges // 2)]
        ).to(train_seeds),
        # num_negs = 1, neg_share = False
        negative_sampler=NegativeSampler(
            g, 1, False, device if use_uva else None
        ),
    )
    train_dataloader = DataLoader(
        g,
        train_seeds,
        sampler,
        device=device,
        batch_size=10000,
        shuffle=True,
        drop_last=False,
        num_workers=0,
        use_ddp=True,
        use_uva=use_uva,
    )
    opt = torch.optim.Adam(model.parameters(), lr=0.003)
    loss_fcn = CrossEntropyLoss()
    iter_pos = []
    iter_neg = []
    for epoch in range(10):
        tic = time.time()
        model.train()
        for step, (input_nodes, pos_graph, neg_graph, blocks) in enumerate(
            train_dataloader
        ):
            x = blocks[0].srcdata["feat"]
            y_hat = model(blocks, x)
            loss = loss_fcn(y_hat, pos_graph, neg_graph)
            opt.zero_grad()
            loss.backward()
            opt.step()

            if step % 20 == 0 and proc_id == 0:  # log every 20 steps
                # gpu memory reserved by PyTorch
                gpu_mem_alloc = (
                    torch.cuda.max_memory_allocated() / 1000000
                    if torch.cuda.is_available()
                    else 0
                )
                print(
                    f"Epoch {epoch:05d} | Step {step:05d} | Loss {loss.item():.4f} | GPU {gpu_mem_alloc:.1f} MB"
                )

        t = time.time() - tic
        if proc_id == 0:
            print(f"Epoch Time(s): {t:.4f}")
        if (epoch + 1) % 5 == 0:  # eval every 5 epochs
            pred = evaluate(proc_id, model, g, device, use_uva)  # in parallel
            if proc_id == 0:
                # only master proc does the accuracy computation
                eval_acc, test_acc = compute_acc_unsupervised(
                    pred, labels, train_idx, val_idx, test_idx
                )
                print(
                    f"Epoch {epoch:05d} | Eval F1-score {eval_acc:.4f} | Test F1-Score {test_acc:.4f}"
                )


def run(proc_id, nprocs, devices, g, data, mode):
    # find corresponding device for my rank
    device = devices[proc_id]
    torch.cuda.set_device(device)
    # initialize process group and unpack data for sub-processes
    dist.init_process_group(
        backend="nccl",
        init_method="tcp://127.0.0.1:12345",
        world_size=nprocs,
        rank=proc_id,
    )
    out_size, train_idx, val_idx, test_idx = data
    g = g.to(device if mode == "puregpu" else "cpu")
    # create GraphSAGE model (distributed)
    in_size = g.ndata["feat"].shape[1]
    model = SAGE(in_size, 16, 16).to(device)
    model = DistributedDataParallel(
        model, device_ids=[device], output_device=device
    )
    # training + testing
    use_uva = mode == "mixed"
    train(
        proc_id, nprocs, device, g, train_idx, val_idx, test_idx, model, use_uva
    )
    # cleanup process group
    dist.destroy_process_group()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--dataset",
        type=str,
        default="ogbn-products",
        choices=["ogbn-products", "reddit"],
        help="name of dataset (default: ogbn-products)",
    )
    parser.add_argument(
        "--mode",
        default="mixed",
        choices=["mixed", "puregpu"],
        help="Training mode. 'mixed' for CPU-GPU mixed training, "
        "'puregpu' for pure-GPU training.",
    )
    parser.add_argument(
        "--gpu",
        type=str,
        default="0",
        help="GPU(s) in use. Can be a list of gpu ids for multi-gpu training,"
        " e.g., 0,1,2,3.",
    )
    args = parser.parse_args()
    devices = list(map(int, args.gpu.split(",")))
    nprocs = len(devices)
    assert (
        torch.cuda.is_available()
    ), f"Must have GPUs to enable multi-gpu training."
    print(f"Training in {args.mode} mode using {nprocs} GPU(s)")

    # load and preprocess dataset
    print("Loading data")
    if args.dataset == "ogbn-products":
        # can it be AsLinkPredDataset?
        dataset = AsNodePredDataset(DglNodePropPredDataset("ogbn-products"))
    elif args.dataset == "reddit":
        dataset = AsNodePredDataset(RedditDataset(self_loop=False))

    g = dataset[0]
    # avoid creating certain graph formats in each sub-process to save momory
    g.create_formats_()
    # thread limiting to avoid resource competition
    os.environ["OMP_NUM_THREADS"] = str(mp.cpu_count() // 2 // nprocs)
    data = (
        dataset.num_classes,
        dataset.train_idx,
        dataset.val_idx,
        dataset.test_idx,
    )

    mp.spawn(run, args=(nprocs, devices, g, data, args.mode), nprocs=nprocs)