"vscode:/vscode.git/clone" did not exist on "f57a2e074524de33a3a8e3412828913cea0c31c2"
sparse_matrix.cc 11.4 KB
Newer Older
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
1
/**
2
3
 *  Copyright (c) 2022 by Contributors
 * @file sparse_matrix.cc
czkkkkkk's avatar
czkkkkkk committed
4
 * @brief DGL C++ sparse matrix implementations.
5
 */
czkkkkkk's avatar
czkkkkkk committed
6
7
8
9
10
// clang-format off
#include <sparse/dgl_headers.h>
// clang-format on

#include <c10/util/Logging.h>
11
12
#include <sparse/elementwise_op.h>
#include <sparse/sparse_matrix.h>
czkkkkkk's avatar
czkkkkkk committed
13
#include <torch/script.h>
14

15
16
#include "./utils.h"

17
18
19
20
21
namespace dgl {
namespace sparse {

SparseMatrix::SparseMatrix(
    const std::shared_ptr<COO>& coo, const std::shared_ptr<CSR>& csr,
22
23
24
25
26
27
28
29
    const std::shared_ptr<CSR>& csc, const std::shared_ptr<Diag>& diag,
    torch::Tensor value, const std::vector<int64_t>& shape)
    : coo_(coo),
      csr_(csr),
      csc_(csc),
      diag_(diag),
      value_(value),
      shape_(shape) {
30
  TORCH_CHECK(
31
32
33
      coo != nullptr || csr != nullptr || csc != nullptr || diag != nullptr,
      "At least one of CSR/COO/CSC/Diag is required to construct a "
      "SparseMatrix.")
34
35
36
  TORCH_CHECK(
      shape.size() == 2, "The shape of a sparse matrix should be ",
      "2-dimensional.");
37
38
39
40
  // NOTE: Currently all the tensors of a SparseMatrix should on the same
  // device. Do we allow the graph structure and values are on different
  // devices?
  if (coo != nullptr) {
41
42
43
44
    TORCH_CHECK(coo->indices.dim() == 2);
    TORCH_CHECK(coo->indices.size(0) == 2);
    TORCH_CHECK(coo->indices.size(1) == value.size(0));
    TORCH_CHECK(coo->indices.device() == value.device());
45
46
  }
  if (csr != nullptr) {
47
48
49
50
51
52
    TORCH_CHECK(csr->indptr.dim() == 1);
    TORCH_CHECK(csr->indices.dim() == 1);
    TORCH_CHECK(csr->indptr.size(0) == shape[0] + 1);
    TORCH_CHECK(csr->indices.size(0) == value.size(0));
    TORCH_CHECK(csr->indptr.device() == value.device());
    TORCH_CHECK(csr->indices.device() == value.device());
53
54
  }
  if (csc != nullptr) {
55
56
57
58
59
60
    TORCH_CHECK(csc->indptr.dim() == 1);
    TORCH_CHECK(csc->indices.dim() == 1);
    TORCH_CHECK(csc->indptr.size(0) == shape[1] + 1);
    TORCH_CHECK(csc->indices.size(0) == value.size(0));
    TORCH_CHECK(csc->indptr.device() == value.device());
    TORCH_CHECK(csc->indices.device() == value.device());
61
  }
62
63
64
  if (diag != nullptr) {
    TORCH_CHECK(value.size(0) == std::min(diag->num_rows, diag->num_cols));
  }
65
66
}

67
c10::intrusive_ptr<SparseMatrix> SparseMatrix::FromCOOPointer(
68
69
    const std::shared_ptr<COO>& coo, torch::Tensor value,
    const std::vector<int64_t>& shape) {
70
71
  return c10::make_intrusive<SparseMatrix>(
      coo, nullptr, nullptr, nullptr, value, shape);
72
73
}

74
c10::intrusive_ptr<SparseMatrix> SparseMatrix::FromCSRPointer(
75
76
    const std::shared_ptr<CSR>& csr, torch::Tensor value,
    const std::vector<int64_t>& shape) {
77
78
  return c10::make_intrusive<SparseMatrix>(
      nullptr, csr, nullptr, nullptr, value, shape);
79
80
}

81
c10::intrusive_ptr<SparseMatrix> SparseMatrix::FromCSCPointer(
82
83
    const std::shared_ptr<CSR>& csc, torch::Tensor value,
    const std::vector<int64_t>& shape) {
84
85
86
87
88
89
90
91
92
  return c10::make_intrusive<SparseMatrix>(
      nullptr, nullptr, csc, nullptr, value, shape);
}

c10::intrusive_ptr<SparseMatrix> SparseMatrix::FromDiagPointer(
    const std::shared_ptr<Diag>& diag, torch::Tensor value,
    const std::vector<int64_t>& shape) {
  return c10::make_intrusive<SparseMatrix>(
      nullptr, nullptr, nullptr, diag, value, shape);
93
94
}

95
c10::intrusive_ptr<SparseMatrix> SparseMatrix::FromCOO(
96
    torch::Tensor indices, torch::Tensor value,
97
    const std::vector<int64_t>& shape) {
98
99
  auto coo =
      std::make_shared<COO>(COO{shape[0], shape[1], indices, false, false});
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
  return SparseMatrix::FromCOOPointer(coo, value, shape);
}

c10::intrusive_ptr<SparseMatrix> SparseMatrix::FromCSR(
    torch::Tensor indptr, torch::Tensor indices, torch::Tensor value,
    const std::vector<int64_t>& shape) {
  auto csr = std::make_shared<CSR>(
      CSR{shape[0], shape[1], indptr, indices, torch::optional<torch::Tensor>(),
          false});
  return SparseMatrix::FromCSRPointer(csr, value, shape);
}

c10::intrusive_ptr<SparseMatrix> SparseMatrix::FromCSC(
    torch::Tensor indptr, torch::Tensor indices, torch::Tensor value,
    const std::vector<int64_t>& shape) {
  auto csc = std::make_shared<CSR>(
      CSR{shape[1], shape[0], indptr, indices, torch::optional<torch::Tensor>(),
          false});
  return SparseMatrix::FromCSCPointer(csc, value, shape);
}

121
122
123
124
125
126
c10::intrusive_ptr<SparseMatrix> SparseMatrix::FromDiag(
    torch::Tensor value, const std::vector<int64_t>& shape) {
  auto diag = std::make_shared<Diag>(Diag{shape[0], shape[1]});
  return SparseMatrix::FromDiagPointer(diag, value, shape);
}

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
c10::intrusive_ptr<SparseMatrix> SparseMatrix::IndexSelect(
    int64_t dim, torch::Tensor ids) {
  auto id_array = TorchTensorToDGLArray(ids);
  bool rowwise = dim == 0;
  auto csr = rowwise ? this->CSRPtr() : this->CSCPtr();
  auto slice_csr = dgl::aten::CSRSliceRows(CSRToOldDGLCSR(csr), id_array);
  auto slice_value =
      this->value().index_select(0, DGLArrayToTorchTensor(slice_csr.data));
  // To prevent potential errors in future conversions to the COO format,
  // where this array might be used as an initialization array for
  // constructing COO representations, it is necessary to clear this array.
  slice_csr.data = dgl::aten::NullArray();
  auto ret = CSRFromOldDGLCSR(slice_csr);
  if (rowwise) {
    return SparseMatrix::FromCSRPointer(
        ret, slice_value, {ret->num_rows, ret->num_cols});
  } else {
    return SparseMatrix::FromCSCPointer(
        ret, slice_value, {ret->num_cols, ret->num_rows});
  }
}

c10::intrusive_ptr<SparseMatrix> SparseMatrix::RangeSelect(
    int64_t dim, int64_t start, int64_t end) {
  bool rowwise = dim == 0;
  auto csr = rowwise ? this->CSRPtr() : this->CSCPtr();
  auto slice_csr = dgl::aten::CSRSliceRows(CSRToOldDGLCSR(csr), start, end);
  auto slice_value =
      this->value().index_select(0, DGLArrayToTorchTensor(slice_csr.data));
  // To prevent potential errors in future conversions to the COO format,
  // where this array might be used as an initialization array for
  // constructing COO representations, it is necessary to clear this array.
  slice_csr.data = dgl::aten::NullArray();
  auto ret = CSRFromOldDGLCSR(slice_csr);
  if (rowwise) {
    return SparseMatrix::FromCSRPointer(
        ret, slice_value, {ret->num_rows, ret->num_cols});
  } else {
    return SparseMatrix::FromCSCPointer(
        ret, slice_value, {ret->num_cols, ret->num_rows});
  }
}

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
c10::intrusive_ptr<SparseMatrix> SparseMatrix::Sample(
    int64_t dim, int64_t fanout, torch::Tensor ids, bool replace, bool bias) {
  bool rowwise = dim == 0;
  auto id_array = TorchTensorToDGLArray(ids);
  auto csr = rowwise ? this->CSRPtr() : this->CSCPtr();
  // Slicing matrix.
  auto slice_csr = dgl::aten::CSRSliceRows(CSRToOldDGLCSR(csr), id_array);
  auto slice_value =
      this->value().index_select(0, DGLArrayToTorchTensor(slice_csr.data));
  // Reset value indices.
  slice_csr.data = dgl::aten::NullArray();

  auto prob =
      bias ? TorchTensorToDGLArray(slice_value) : dgl::aten::NullArray();
  auto slice_id =
      dgl::aten::Range(0, id_array.NumElements(), 64, id_array->ctx);
  // Sampling all rows on sliced matrix.
  auto sample_coo =
      dgl::aten::CSRRowWiseSampling(slice_csr, slice_id, fanout, prob, replace);
  auto sample_value =
      slice_value.index_select(0, DGLArrayToTorchTensor(sample_coo.data));
  sample_coo.data = dgl::aten::NullArray();
  auto ret = COOFromOldDGLCOO(sample_coo);
  if (!rowwise) ret = COOTranspose(ret);
  return SparseMatrix::FromCOOPointer(
      ret, sample_value, {ret->num_rows, ret->num_cols});
}

198
199
200
201
202
203
204
205
c10::intrusive_ptr<SparseMatrix> SparseMatrix::ValLike(
    const c10::intrusive_ptr<SparseMatrix>& mat, torch::Tensor value) {
  TORCH_CHECK(
      mat->value().size(0) == value.size(0), "The first dimension of ",
      "the old values and the new values must be the same.");
  TORCH_CHECK(
      mat->value().device() == value.device(), "The device of the ",
      "old values and the new values must be the same.");
206
207
208
209
  const auto& shape = mat->shape();
  if (mat->HasDiag()) {
    return SparseMatrix::FromDiagPointer(mat->DiagPtr(), value, shape);
  }
210
211
  if (mat->HasCOO()) {
    return SparseMatrix::FromCOOPointer(mat->COOPtr(), value, shape);
212
213
  }
  if (mat->HasCSR()) {
214
215
    return SparseMatrix::FromCSRPointer(mat->CSRPtr(), value, shape);
  }
216
217
  TORCH_CHECK(mat->HasCSC(), "Invalid sparse format for ValLike.")
  return SparseMatrix::FromCSCPointer(mat->CSCPtr(), value, shape);
218
219
}

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
std::shared_ptr<COO> SparseMatrix::COOPtr() {
  if (coo_ == nullptr) {
    _CreateCOO();
  }
  return coo_;
}

std::shared_ptr<CSR> SparseMatrix::CSRPtr() {
  if (csr_ == nullptr) {
    _CreateCSR();
  }
  return csr_;
}

std::shared_ptr<CSR> SparseMatrix::CSCPtr() {
  if (csc_ == nullptr) {
    _CreateCSC();
  }
  return csc_;
}

241
242
243
244
245
246
247
std::shared_ptr<Diag> SparseMatrix::DiagPtr() {
  TORCH_CHECK(
      diag_ != nullptr,
      "Cannot get Diag sparse format from a non-diagonal sparse matrix");
  return diag_;
}

248
std::tuple<torch::Tensor, torch::Tensor> SparseMatrix::COOTensors() {
249
  auto coo = COOPtr();
250
  return std::make_tuple(coo->indices.index({0}), coo->indices.index({1}));
251
252
}

253
254
255
256
257
torch::Tensor SparseMatrix::Indices() {
  auto coo = COOPtr();
  return coo->indices;
}

258
259
std::tuple<torch::Tensor, torch::Tensor, torch::optional<torch::Tensor>>
SparseMatrix::CSRTensors() {
260
261
  auto csr = CSRPtr();
  auto val = value();
262
  return std::make_tuple(csr->indptr, csr->indices, csr->value_indices);
263
264
}

265
266
std::tuple<torch::Tensor, torch::Tensor, torch::optional<torch::Tensor>>
SparseMatrix::CSCTensors() {
267
  auto csc = CSCPtr();
268
  return std::make_tuple(csc->indptr, csc->indices, csc->value_indices);
269
270
}

271
272
273
274
c10::intrusive_ptr<SparseMatrix> SparseMatrix::Transpose() const {
  auto shape = shape_;
  std::swap(shape[0], shape[1]);
  auto value = value_;
275
276
277
  if (HasDiag()) {
    return SparseMatrix::FromDiag(value, shape);
  } else if (HasCOO()) {
278
    auto coo = COOTranspose(coo_);
279
    return SparseMatrix::FromCOOPointer(coo, value, shape);
280
  } else if (HasCSR()) {
281
    return SparseMatrix::FromCSCPointer(csr_, value, shape);
282
  } else {
283
    return SparseMatrix::FromCSRPointer(csc_, value, shape);
284
285
286
  }
}

czkkkkkk's avatar
czkkkkkk committed
287
void SparseMatrix::_CreateCOO() {
288
  if (HasCOO()) return;
289
290
291
292
293
294
295
  if (HasDiag()) {
    auto indices_options = torch::TensorOptions()
                               .dtype(torch::kInt64)
                               .layout(torch::kStrided)
                               .device(this->device());
    coo_ = DiagToCOO(diag_, indices_options);
  } else if (HasCSR()) {
296
    coo_ = CSRToCOO(csr_);
czkkkkkk's avatar
czkkkkkk committed
297
  } else if (HasCSC()) {
298
    coo_ = CSCToCOO(csc_);
czkkkkkk's avatar
czkkkkkk committed
299
300
301
302
303
  } else {
    LOG(FATAL) << "SparseMatrix does not have any sparse format";
  }
}

304
305
void SparseMatrix::_CreateCSR() {
  if (HasCSR()) return;
306
307
308
309
310
311
312
  if (HasDiag()) {
    auto indices_options = torch::TensorOptions()
                               .dtype(torch::kInt64)
                               .layout(torch::kStrided)
                               .device(this->device());
    csr_ = DiagToCSR(diag_, indices_options);
  } else if (HasCOO()) {
313
314
315
316
317
318
319
320
321
322
    csr_ = COOToCSR(coo_);
  } else if (HasCSC()) {
    csr_ = CSCToCSR(csc_);
  } else {
    LOG(FATAL) << "SparseMatrix does not have any sparse format";
  }
}

void SparseMatrix::_CreateCSC() {
  if (HasCSC()) return;
323
324
325
326
327
328
329
  if (HasDiag()) {
    auto indices_options = torch::TensorOptions()
                               .dtype(torch::kInt64)
                               .layout(torch::kStrided)
                               .device(this->device());
    csc_ = DiagToCSC(diag_, indices_options);
  } else if (HasCOO()) {
330
331
332
333
334
335
336
    csc_ = COOToCSC(coo_);
  } else if (HasCSR()) {
    csc_ = CSRToCSC(csr_);
  } else {
    LOG(FATAL) << "SparseMatrix does not have any sparse format";
  }
}
337
338
339

}  // namespace sparse
}  // namespace dgl