main.py 5.54 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import dgl
import argparse
import torch as th
from model import CAREGNN
import torch.optim as optim
from utils import EarlyStopping
from sklearn.metrics import recall_score, roc_auc_score


def main(args):
    # Step 1: Prepare graph data and retrieve train/validation/test index ============================= #
    # Load dataset
    dataset = dgl.data.FraudDataset(args.dataset, train_size=0.4)
    graph = dataset[0]
    num_classes = dataset.num_classes

    # check cuda
    if args.gpu >= 0 and th.cuda.is_available():
        device = 'cuda:{}'.format(args.gpu)
    else:
        device = 'cpu'

    # retrieve labels of ground truth
    labels = graph.ndata['label'].to(device).squeeze().long()

    # Extract node features
    feat = graph.ndata['feature'].to(device).float()

    # retrieve masks for train/validation/test
    train_mask = graph.ndata['train_mask']
    val_mask = graph.ndata['val_mask']
    test_mask = graph.ndata['test_mask']

    train_idx = th.nonzero(train_mask, as_tuple=False).squeeze(1).to(device)
    val_idx = th.nonzero(val_mask, as_tuple=False).squeeze(1).to(device)
    test_idx = th.nonzero(test_mask, as_tuple=False).squeeze(1).to(device)

    # Reinforcement learning module only for positive training nodes
    rl_idx = th.nonzero(train_mask.to(device) & labels.bool(), as_tuple=False).squeeze(1)

    graph = graph.to(device)

    # Step 2: Create model =================================================================== #
    model = CAREGNN(in_dim=feat.shape[-1],
                    num_classes=num_classes,
                    hid_dim=args.hid_dim,
                    num_layers=args.num_layers,
                    activation=th.tanh,
                    step_size=args.step_size,
                    edges=graph.canonical_etypes)

    model = model.to(device)

    # Step 3: Create training components ===================================================== #
    _, cnt = th.unique(labels, return_counts=True)
    loss_fn = th.nn.CrossEntropyLoss(weight=1 / cnt)
    optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
    if args.early_stop:
        stopper = EarlyStopping(patience=100)

    # Step 4: training epochs =============================================================== #
    for epoch in range(args.max_epoch):
        # Training and validation using a full graph
        model.train()
        logits_gnn, logits_sim = model(graph, feat)

        # compute loss
        tr_loss = loss_fn(logits_gnn[train_idx], labels[train_idx]) + \
                  args.sim_weight * loss_fn(logits_sim[train_idx], labels[train_idx])

        tr_recall = recall_score(labels[train_idx].cpu(), logits_gnn.data[train_idx].argmax(dim=1).cpu())
        tr_auc = roc_auc_score(labels[train_idx].cpu(), logits_gnn.data[train_idx][:, 1].cpu())

        # validation
        val_loss = loss_fn(logits_gnn[val_idx], labels[val_idx]) + \
                   args.sim_weight * loss_fn(logits_sim[val_idx], labels[val_idx])
        val_recall = recall_score(labels[val_idx].cpu(), logits_gnn.data[val_idx].argmax(dim=1).cpu())
        val_auc = roc_auc_score(labels[val_idx].cpu(), logits_gnn.data[val_idx][:, 1].cpu())

        # backward
        optimizer.zero_grad()
        tr_loss.backward()
        optimizer.step()

        # Print out performance
        print("Epoch {}, Train: Recall: {:.4f} AUC: {:.4f} Loss: {:.4f} | Val: Recall: {:.4f} AUC: {:.4f} Loss: {:.4f}"
              .format(epoch, tr_recall, tr_auc, tr_loss.item(), val_recall, val_auc, val_loss.item()))

        # Adjust p value with reinforcement learning module
        model.RLModule(graph, epoch, rl_idx)

        if args.early_stop:
            if stopper.step(val_auc, model):
                break

    # Test after all epoch
    model.eval()
    if args.early_stop:
        model.load_state_dict(th.load('es_checkpoint.pt'))

    # forward
    logits_gnn, logits_sim = model.forward(graph, feat)

    # compute loss
    test_loss = loss_fn(logits_gnn[test_idx], labels[test_idx]) + \
                args.sim_weight * loss_fn(logits_sim[test_idx], labels[test_idx])
    test_recall = recall_score(labels[test_idx].cpu(), logits_gnn[test_idx].argmax(dim=1).cpu())
    test_auc = roc_auc_score(labels[test_idx].cpu(), logits_gnn.data[test_idx][:, 1].cpu())

    print("Test Recall: {:.4f} AUC: {:.4f} Loss: {:.4f}".format(test_recall, test_auc, test_loss.item()))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN-based Anti-Spam Model')
    parser.add_argument("--dataset", type=str, default="amazon", help="DGL dataset for this model (yelp, or amazon)")
    parser.add_argument("--gpu", type=int, default=-1, help="GPU index. Default: -1, using CPU.")
    parser.add_argument("--hid_dim", type=int, default=64, help="Hidden layer dimension")
    parser.add_argument("--num_layers", type=int, default=1, help="Number of layers")
    parser.add_argument("--max_epoch", type=int, default=30, help="The max number of epochs. Default: 30")
    parser.add_argument("--lr", type=float, default=0.01, help="Learning rate. Default: 0.01")
    parser.add_argument("--weight_decay", type=float, default=0.001, help="Weight decay. Default: 0.001")
    parser.add_argument("--step_size", type=float, default=0.02, help="RL action step size (lambda 2). Default: 0.02")
    parser.add_argument("--sim_weight", type=float, default=2, help="Similarity loss weight (lambda 1). Default: 2")
    parser.add_argument('--early-stop', action='store_true', default=True, help="indicates whether to use early stop")

    args = parser.parse_args()
    print(args)
    th.manual_seed(717)
    main(args)