test_dataloader.py 13.8 KB
Newer Older
1
import os
2
import numpy as np
3
import dgl
4
import dgl.ops as OPS
5
6
import backend as F
import unittest
7
import torch
8
from functools import partial
9
10
from torch.utils.data import DataLoader
from collections import defaultdict
11
from collections.abc import Iterator, Mapping
12
from itertools import product
13
import pytest
14
15


16
17
18
19
20
def test_graph_dataloader():
    batch_size = 16
    num_batches = 2
    minigc_dataset = dgl.data.MiniGCDataset(batch_size * num_batches, 10, 20)
    data_loader = dgl.dataloading.GraphDataLoader(minigc_dataset, batch_size=batch_size, shuffle=True)
21
    assert isinstance(iter(data_loader), Iterator)
22
23
24
    for graph, label in data_loader:
        assert isinstance(graph, dgl.DGLGraph)
        assert F.asnumpy(label).shape[0] == batch_size
25

26
27
28
29
30
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@pytest.mark.parametrize('num_workers', [0, 4])
def test_cluster_gcn(num_workers):
    dataset = dgl.data.CoraFullDataset()
    g = dataset[0]
31
32
33
34
35
36
    sampler = dgl.dataloading.ClusterGCNSampler(g, 100)
    dataloader = dgl.dataloading.DataLoader(
        g, torch.arange(100), sampler, batch_size=4, num_workers=num_workers)
    assert len(dataloader) == 25
    for i, sg in enumerate(dataloader):
        pass
37
38
39
40
41
42
43
44

@pytest.mark.parametrize('num_workers', [0, 4])
def test_shadow(num_workers):
    g = dgl.data.CoraFullDataset()[0]
    sampler = dgl.dataloading.ShaDowKHopSampler([5, 10, 15])
    dataloader = dgl.dataloading.NodeDataLoader(
        g, torch.arange(g.num_nodes()), sampler,
        batch_size=5, shuffle=True, drop_last=False, num_workers=num_workers)
45
    for i, (input_nodes, output_nodes, subgraph) in enumerate(dataloader):
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        assert torch.equal(input_nodes, subgraph.ndata[dgl.NID])
        assert torch.equal(input_nodes[:output_nodes.shape[0]], output_nodes)
        assert torch.equal(subgraph.ndata['label'], g.ndata['label'][input_nodes])
        assert torch.equal(subgraph.ndata['feat'], g.ndata['feat'][input_nodes])
        if i == 5:
            break


@pytest.mark.parametrize('num_workers', [0, 4])
def test_neighbor_nonuniform(num_workers):
    g = dgl.graph(([1, 2, 3, 4, 5, 6, 7, 8], [0, 0, 0, 0, 1, 1, 1, 1]))
    g.edata['p'] = torch.FloatTensor([1, 1, 0, 0, 1, 1, 0, 0])
    sampler = dgl.dataloading.MultiLayerNeighborSampler([2], prob='p')
    dataloader = dgl.dataloading.NodeDataLoader(g, [0, 1], sampler, batch_size=1, device=F.ctx())
    for input_nodes, output_nodes, blocks in dataloader:
        seed = output_nodes.item()
        neighbors = set(input_nodes[1:].cpu().numpy())
        if seed == 1:
            assert neighbors == {5, 6}
        elif seed == 0:
            assert neighbors == {1, 2}

    g = dgl.heterograph({
        ('B', 'BA', 'A'): ([1, 2, 3, 4, 5, 6, 7, 8], [0, 0, 0, 0, 1, 1, 1, 1]),
        ('C', 'CA', 'A'): ([1, 2, 3, 4, 5, 6, 7, 8], [0, 0, 0, 0, 1, 1, 1, 1]),
        })
    g.edges['BA'].data['p'] = torch.FloatTensor([1, 1, 0, 0, 1, 1, 0, 0])
    g.edges['CA'].data['p'] = torch.FloatTensor([0, 0, 1, 1, 0, 0, 1, 1])
    sampler = dgl.dataloading.MultiLayerNeighborSampler([2], prob='p')
    dataloader = dgl.dataloading.NodeDataLoader(
        g, {'A': [0, 1]}, sampler, batch_size=1, device=F.ctx())
    for input_nodes, output_nodes, blocks in dataloader:
        seed = output_nodes['A'].item()
        # Seed and neighbors are of different node types so slicing is not necessary here.
        neighbors = set(input_nodes['B'].cpu().numpy())
        if seed == 1:
            assert neighbors == {5, 6}
        elif seed == 0:
            assert neighbors == {1, 2}

        neighbors = set(input_nodes['C'].cpu().numpy())
        if seed == 1:
            assert neighbors == {7, 8}
        elif seed == 0:
            assert neighbors == {3, 4}


93
94
95
96
97
98
99
100
101
102
def _check_device(data):
    if isinstance(data, dict):
        for k, v in data.items():
            assert v.device == F.ctx()
    elif isinstance(data, list):
        for v in data:
            assert v.device == F.ctx()
    else:
        assert data.device == F.ctx()

103
@pytest.mark.parametrize('sampler_name', ['full', 'neighbor', 'neighbor2'])
104
@pytest.mark.parametrize('pin_graph', [False, True])
105
def test_node_dataloader(sampler_name, pin_graph):
Xin Yao's avatar
Xin Yao committed
106
    g1 = dgl.graph(([0, 0, 0, 1, 1], [1, 2, 3, 3, 4]))
107
108
109
    if F.ctx() != F.cpu() and pin_graph:
        g1.create_formats_()
        g1.pin_memory_()
Xin Yao's avatar
Xin Yao committed
110
    g1.ndata['feat'] = F.copy_to(F.randn((5, 8)), F.cpu())
111
112
    g1.ndata['label'] = F.copy_to(F.randn((g1.num_nodes(),)), F.cpu())

113
114
115
116
117
118
119
120
121
122
123
124
125
    for num_workers in [0, 1, 2]:
        sampler = {
            'full': dgl.dataloading.MultiLayerFullNeighborSampler(2),
            'neighbor': dgl.dataloading.MultiLayerNeighborSampler([3, 3]),
            'neighbor2': dgl.dataloading.MultiLayerNeighborSampler([3, 3])}[sampler_name]
        dataloader = dgl.dataloading.NodeDataLoader(
            g1, g1.nodes(), sampler, device=F.ctx(),
            batch_size=g1.num_nodes(),
            num_workers=num_workers)
        for input_nodes, output_nodes, blocks in dataloader:
            _check_device(input_nodes)
            _check_device(output_nodes)
            _check_device(blocks)
126
127
128
129
130
131

    g2 = dgl.heterograph({
         ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2], [1, 2, 3, 0, 2, 3, 0]),
         ('user', 'followed-by', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
         ('user', 'play', 'game'): ([0, 1, 1, 3, 5], [0, 1, 2, 0, 2]),
         ('game', 'played-by', 'user'): ([0, 1, 2, 0, 2], [0, 1, 1, 3, 5])
Xin Yao's avatar
Xin Yao committed
132
    })
133
    for ntype in g2.ntypes:
Xin Yao's avatar
Xin Yao committed
134
        g2.nodes[ntype].data['feat'] = F.copy_to(F.randn((g2.num_nodes(ntype), 8)), F.cpu())
135
    batch_size = max(g2.num_nodes(nty) for nty in g2.ntypes)
136
137
138
    sampler = {
        'full': dgl.dataloading.MultiLayerFullNeighborSampler(2),
        'neighbor': dgl.dataloading.MultiLayerNeighborSampler([{etype: 3 for etype in g2.etypes}] * 2),
139
        'neighbor2': dgl.dataloading.MultiLayerNeighborSampler([3, 3])}[sampler_name]
140

141
142
143
144
145
146
147
148
    dataloader = dgl.dataloading.NodeDataLoader(
        g2, {nty: g2.nodes(nty) for nty in g2.ntypes},
        sampler, device=F.ctx(), batch_size=batch_size)
    assert isinstance(iter(dataloader), Iterator)
    for input_nodes, output_nodes, blocks in dataloader:
        _check_device(input_nodes)
        _check_device(output_nodes)
        _check_device(blocks)
149

150
151
    if g1.is_pinned():
        g1.unpin_memory_()
152

153
@pytest.mark.parametrize('sampler_name', ['full', 'neighbor'])
154
155
156
157
@pytest.mark.parametrize('neg_sampler', [
    dgl.dataloading.negative_sampler.Uniform(2),
    dgl.dataloading.negative_sampler.GlobalUniform(15, False, 3),
    dgl.dataloading.negative_sampler.GlobalUniform(15, True, 3)])
158
@pytest.mark.parametrize('pin_graph', [False, True])
159
def test_edge_dataloader(sampler_name, neg_sampler, pin_graph):
Xin Yao's avatar
Xin Yao committed
160
    g1 = dgl.graph(([0, 0, 0, 1, 1], [1, 2, 3, 3, 4]))
161
162
163
    if F.ctx() != F.cpu() and pin_graph:
        g1.create_formats_()
        g1.pin_memory_()
Xin Yao's avatar
Xin Yao committed
164
    g1.ndata['feat'] = F.copy_to(F.randn((5, 8)), F.cpu())
165

166
167
    sampler = {
        'full': dgl.dataloading.MultiLayerFullNeighborSampler(2),
168
        'neighbor': dgl.dataloading.MultiLayerNeighborSampler([3, 3])}[sampler_name]
169

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
170
    # no negative sampler
171
172
173
174
175
176
177
    dataloader = dgl.dataloading.EdgeDataLoader(
        g1, g1.edges(form='eid'), sampler, device=F.ctx(), batch_size=g1.num_edges())
    for input_nodes, pos_pair_graph, blocks in dataloader:
        _check_device(input_nodes)
        _check_device(pos_pair_graph)
        _check_device(blocks)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
178
    # negative sampler
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    dataloader = dgl.dataloading.EdgeDataLoader(
        g1, g1.edges(form='eid'), sampler, device=F.ctx(),
        negative_sampler=neg_sampler, batch_size=g1.num_edges())
    for input_nodes, pos_pair_graph, neg_pair_graph, blocks in dataloader:
        _check_device(input_nodes)
        _check_device(pos_pair_graph)
        _check_device(neg_pair_graph)
        _check_device(blocks)

    g2 = dgl.heterograph({
         ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2], [1, 2, 3, 0, 2, 3, 0]),
         ('user', 'followed-by', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
         ('user', 'play', 'game'): ([0, 1, 1, 3, 5], [0, 1, 2, 0, 2]),
         ('game', 'played-by', 'user'): ([0, 1, 2, 0, 2], [0, 1, 1, 3, 5])
Xin Yao's avatar
Xin Yao committed
193
    })
194
    for ntype in g2.ntypes:
Xin Yao's avatar
Xin Yao committed
195
        g2.nodes[ntype].data['feat'] = F.copy_to(F.randn((g2.num_nodes(ntype), 8)), F.cpu())
196
    batch_size = max(g2.num_edges(ety) for ety in g2.canonical_etypes)
197
198
199
    sampler = {
        'full': dgl.dataloading.MultiLayerFullNeighborSampler(2),
        'neighbor': dgl.dataloading.MultiLayerNeighborSampler([{etype: 3 for etype in g2.etypes}] * 2),
200
        }[sampler_name]
201

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
202
    # no negative sampler
203
204
    dataloader = dgl.dataloading.EdgeDataLoader(
        g2, {ety: g2.edges(form='eid', etype=ety) for ety in g2.canonical_etypes},
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
205
206
        sampler, device=F.ctx(), batch_size=batch_size)
    for input_nodes, pos_pair_graph, blocks in dataloader:
207
208
209
210
        _check_device(input_nodes)
        _check_device(pos_pair_graph)
        _check_device(blocks)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
211
    # negative sampler
212
213
214
    dataloader = dgl.dataloading.EdgeDataLoader(
        g2, {ety: g2.edges(form='eid', etype=ety) for ety in g2.canonical_etypes},
        sampler, device=F.ctx(), negative_sampler=neg_sampler,
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
215
        batch_size=batch_size)
216

217
    assert isinstance(iter(dataloader), Iterator)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
218
    for input_nodes, pos_pair_graph, neg_pair_graph, blocks in dataloader:
219
220
221
222
223
        _check_device(input_nodes)
        _check_device(pos_pair_graph)
        _check_device(neg_pair_graph)
        _check_device(blocks)

224
225
226
    if g1.is_pinned():
        g1.unpin_memory_()

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
def _create_homogeneous():
    s = torch.randint(0, 200, (1000,), device=F.ctx())
    d = torch.randint(0, 200, (1000,), device=F.ctx())
    src = torch.cat([s, d])
    dst = torch.cat([d, s])
    g = dgl.graph((s, d), num_nodes=200)
    reverse_eids = torch.cat([torch.arange(1000, 2000), torch.arange(0, 1000)]).to(F.ctx())
    always_exclude = torch.randint(0, 1000, (50,), device=F.ctx())
    seed_edges = torch.arange(0, 1000, device=F.ctx())
    return g, reverse_eids, always_exclude, seed_edges

def _create_heterogeneous():
    edges = {}
    for utype, etype, vtype in [('A', 'AA', 'A'), ('A', 'AB', 'B')]:
        s = torch.randint(0, 200, (1000,), device=F.ctx())
        d = torch.randint(0, 200, (1000,), device=F.ctx())
        edges[utype, etype, vtype] = (s, d)
        edges[vtype, 'rev-' + etype, utype] = (d, s)
    g = dgl.heterograph(edges, num_nodes_dict={'A': 200, 'B': 200})
    reverse_etypes = {'AA': 'rev-AA', 'AB': 'rev-AB', 'rev-AA': 'AA', 'rev-AB': 'AB'}
    always_exclude = {
        'AA': torch.randint(0, 1000, (50,), device=F.ctx()),
        'AB': torch.randint(0, 1000, (50,), device=F.ctx())}
    seed_edges = {
        'AA': torch.arange(0, 1000, device=F.ctx()),
        'AB': torch.arange(0, 1000, device=F.ctx())}
    return g, reverse_etypes, always_exclude, seed_edges

def _find_edges_to_exclude(g, exclude, always_exclude, pair_eids):
    if exclude == None:
        return always_exclude
    elif exclude == 'self':
        return torch.cat([pair_eids, always_exclude]) if always_exclude is not None else pair_eids
    elif exclude == 'reverse_id':
        pair_eids = torch.cat([pair_eids, pair_eids + 1000])
        return torch.cat([pair_eids, always_exclude]) if always_exclude is not None else pair_eids
    elif exclude == 'reverse_types':
        pair_eids = {g.to_canonical_etype(k): v for k, v in pair_eids.items()}
        if ('A', 'AA', 'A') in pair_eids:
            pair_eids[('A', 'rev-AA', 'A')] = pair_eids[('A', 'AA', 'A')]
        if ('A', 'AB', 'B') in pair_eids:
            pair_eids[('B', 'rev-AB', 'A')] = pair_eids[('A', 'AB', 'B')]
        if always_exclude is not None:
            always_exclude = {g.to_canonical_etype(k): v for k, v in always_exclude.items()}
            for k in always_exclude.keys():
                if k in pair_eids:
                    pair_eids[k] = torch.cat([pair_eids[k], always_exclude[k]])
                else:
                    pair_eids[k] = always_exclude[k]
        return pair_eids

@pytest.mark.parametrize('always_exclude_flag', [False, True])
@pytest.mark.parametrize('exclude', [None, 'self', 'reverse_id', 'reverse_types'])
def test_edge_dataloader_excludes(exclude, always_exclude_flag):
    if exclude == 'reverse_types':
        g, reverse_etypes, always_exclude, seed_edges = _create_heterogeneous()
    else:
        g, reverse_eids, always_exclude, seed_edges = _create_homogeneous()
    g = g.to(F.ctx())
    sampler = dgl.dataloading.MultiLayerFullNeighborSampler(1)
    if not always_exclude_flag:
        always_exclude = None

    kwargs = {}
    kwargs['exclude'] = (
        partial(_find_edges_to_exclude, g, exclude, always_exclude) if always_exclude_flag
        else exclude)
    kwargs['reverse_eids'] = reverse_eids if exclude == 'reverse_id' else None
    kwargs['reverse_etypes'] = reverse_etypes if exclude == 'reverse_types' else None

    dataloader = dgl.dataloading.EdgeDataLoader(
        g, seed_edges, sampler, batch_size=50, device=F.ctx(), **kwargs)
    for input_nodes, pair_graph, blocks in dataloader:
        block = blocks[0]
        pair_eids = pair_graph.edata[dgl.EID]
        block_eids = block.edata[dgl.EID]

        edges_to_exclude = _find_edges_to_exclude(g, exclude, always_exclude, pair_eids)
        if edges_to_exclude is None:
            continue
        edges_to_exclude = dgl.utils.recursive_apply(edges_to_exclude, lambda x: x.cpu().numpy())
        block_eids = dgl.utils.recursive_apply(block_eids, lambda x: x.cpu().numpy())

        if isinstance(edges_to_exclude, Mapping):
            for k in edges_to_exclude.keys():
                assert not np.isin(edges_to_exclude[k], block_eids[k]).any()
        else:
            assert not np.isin(edges_to_exclude, block_eids).any()

316
if __name__ == '__main__':
317
    test_graph_dataloader()
318
319
    test_cluster_gcn(0)
    test_neighbor_nonuniform(0)
320
321
322
    for exclude in [None, 'self', 'reverse_id', 'reverse_types']:
        test_edge_dataloader_excludes(exclude, False)
        test_edge_dataloader_excludes(exclude, True)